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Abstract. This project implemented a two-stage stochastic linear pro-
gramming model to solve an asset-matching problem. Six assets from
the S&P500 were considered and data was collected over a two-year
timespan from January 2014 to December 2015. The data-calibration
period ranged from January-December 2014 whereby the returns and
covariances of the holding stocks were estimated. From these calibration
estimate, the stock returns were modeled from a multivariate normal
and the stock prices were simulated over the investment period lasting
from January-December 2015. The simulation implemented a Monte-
Carlo method based on a Geometric Brownian motion which led to the
formulation of five discrete scenarios. These scenarios led to a stochastic
program that improved the performance of the underlying deterministic
model.

1 Methodology

Stochastic Programming provides a framework for optimized decision-making
under uncertainty. Specifically, the goal of a two-stage stochastic program is to
formulate an optimization model that will yield a robust solution to a problem
that involves two sets of decisions. The first set of decisioning involves ‘first-
stage’ variables which are made initially and the second set of decisions refer to
‘recourse-variables’ which are made at some time in the future.

Deterministic and Stochastic Model: Consider the following linear pro-
gram, for which we will expand using a stochastic model:

min
x

cTx

st. Ax = b

x ≥ 0

We will call this the deterministic model and we apply it when there is no un-
certainty. The approach for setting up the stochastic problem allows for discrete



scenarios to be generated and the optimization model to incorporate these sce-
narios. To understand how stochastic programming builds on the deterministic
model, consider figure 1 which outlines a simplified two-staged scenario tree.

Fig. 1. A simplified scenario tree for a stochastic program.

For up to S scenarios, we modify the deterministic model in the following
two ways

– determine the expected recourse function EQ(x, ξ) and include this in the
objective function of the optimization

– incorporate constraints for the recourse variables taking the form Wy =
h− Tx

With that, our stochastic model becomes

min
x

cTx + EQ(x, ξ)

st. Ax = b

x ≥ 0

Q = min
y
{qTy|Wy = h− Tx,y ≥ 0}

This stochastic model can be simplified to a great expect by modeling the
expected recourse function as

EQ(x, ξ) =

S∑
s=1

p(s)Q(x, ξs) (1)

Scenario Generation with Monte Carlo Simulations: Attention now is di-
rected towards the generation of appropriate scenarios. This is an important part
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of stochastic programming and efficient scenario generation makes the model
more robust.

As will be developed in section 2, this project will solve an asset-liability
matching problem. This means that the generated scenarios pertain to the re-
turns of a portfolio of up to n assets and l liabilities. Assume that all assets and
liabilities are random variables. In this section, we will address how to simulate
scenarios for our stochastic program by capturing the uncertainty of these vari-
ables.

Simulating Asset Returns: We begin with the portfolio of correlated as-
sets. Assume that their returns rt ∈ Rn at time t follow a multivariate normal
distribution with mean µ ∈ Rn and covariance Q ∈ Rn×n. This is to say that

rt ∼ N (µ,Q)

By this assumption, it follows that our asset prices follow a Geometric Brow-
nian Motion. From this, we can readily derive a stochastic equation governing
the asset prices, starting first from the asset returns. For asset i with price P at
time t, we have

rt =
S
(i)
t − S

(i)
t−1

S
(i)
t−1

= µi + ξ
(i)
t (2)

Where ξi is a normal random variable which accounts for correlation between
your holding assets. We will address shortly how this is determined. Under a
continuous pricing model we have the following stochastic differential equation
(SDE)

dS
(i)
t = µiS

(i)
t dt+ σiξ

(i)
t

√
dt (3)

Solving this SDE leads to the following equation

S
(i)
t+1 = S

(i)
t e(µi− 1

2σ
2
i )dt+σiξ

(i)
t

√
dt (4)

Now we will address where ξi comes from. Given our covariance matrix Q we
can readily define our correlation matrix ρ ∈ Rn×n such that

ρ =


1 ρ12 . . . ρ1n
ρ21 1 . . . ρ2n
...

...
. . .

...
ρn1 ρn2 . . . 1

 (5)

where ρij =
σij

σiσj
. With that, we define L ∈ Rn×n to be the lower Cholesky

factorization of ρ and take ξ ∈ Rn×1 to be defined as follows

ξ := Lε (6)
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Where ε ∈ Rn×1 ∼ N (0, 1 ). It readily follows then that ξ ∼ N (0, LLT ).

Given the above framework for determining the price of an asset, a Monte
Carlo simulation can be run by repeatably calculating the price of an asset as it
follows different paths. Upon each iteration, the asset’s price will be simulated
from a different random path and given a sufficient number of simulations, pa-
rameters can be estimated as done with any other Monte Carlo method. The
results for this simulation is shown in figure 2. Note that the prices estimated
for scenarios were done over a yearly basis with daily time-steps.

Fig. 2. A mesh-plot showing six simulated prices of the holding assets.

Simulating Liabilities: For the sake of simplicity, the liabilities will be mod-
eled from a normal distribution. This means to generate our scenarios, we sample
up to S times from the following random variable

Ls ∼ N (EL, σL)

The specification for these parameters will be outlined in section 2.
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Value of Stochastic Solution: The value of the stochastic solution (VSS) will
be the metric that tells us how good our stochastic model was. VSS is calculated
by taking the difference of the optimal solution under the deterministic model
and the optimal solution under the stochastic model. For a meaningful compar-
ison, the deterministic model is evaluated under the most-likely scenario. This
is calculated as

VSS := Ef(x(ξ̄), ξ)− Ef(x, ξ) (7)

What the VSS amounts the difference between the deterministic model un-
der an expected case and the stochastic model which incorporates all scenarios.
Therefore, a larger VSS indicates that the the stochastic model is more robust
to uncertainty and a smaller VSS means that the uncertainty of the scenarios
do not contribute greatly to the optimal solution.

Expected Value of Perfect Information: The Expected Value of Perfect
Information is simply the solution to the deterministic model under the expected
scenario. This is used to determine the VSS.

2 Problem Formulation

Suppose you are a student facing tuition payments. For the previous year, tu-
ition was. For the previous school year, tuition was $17,000 and you expect that
your tuition will increase by $500 ±200. Therefore, are looking to invest $17,500
to invest in up to six stocks from the S&P500. Your goal is to invest in order to
cover the cost of your tuition. The stocks you can select are from different asset
classes and are presented in table 1.

You are confident that the random fluctuation in the tuition is captured by
a normally distributed variable, so you model your tuition under scenario s as
Ts = 17000 + εs where εs ∼ N (500, 200).

Table 1. Six Stocks from the S&P500 tracked

S&P500 Sector Company Tickers

Consumer Discretionary F

Financials C JPM WFC

Information Technology AAPL IBM

We will be considering S = 5 scenarios, all which are equally likely at p = 1/5.
To simulate the asset returns, we will follow the methodology from section 1 and
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model the stock prices as a Geometric Brownian Motion based on normally dis-
tributed rates of returns. Please refer to section 5 for the code that generated
the scenario values from the Monte Carlo simulation.

Given the number of scenarios, we develop a two-stage stochastic program
which optimizes our investment strategy. We summarize our decision variables
in the following section.

Decision Variables: We will have 16 decision variables in total, which are
specifically

– xi for i = 1 . . . 6 which will represent the dollar amount of wealth to invest
in asset i at the beginning. These are our first-stage decision-variables.

– x
(+)
s for s = 1 . . . 5 which represents the surplus wealth under scenario s.

This is beneficial and therefore comes with a reward of $1 per amount in
surplus, which incentives this outcome.

– x
(−)
s for s = 1 . . . 5 which represents the shortfall wealth under scenario s.

This is not desired as it threatens your ability to make a tuition payment,
so this outcome comes with a penalty of $2 per amount in shortfall. This
discourages running a shortfall.

Optimization Parameters: Our constraints will come directly from our bud-
getary requirements as well as our ability to meet our fluctuating tuition re-
quirements under each scenario. See table 2 for all of the scenarios and expected
results. With that, we have the following:

– µi,s is the simulated rate of return for asset i under scenario s.
– Ts is the randomly generated tuition amount under scenario s.

Table 2. Simulated Scenario Results

s = 1 s = 2 s = 3 s = 4 s = 5 expected

µF -0.009 0.002 -0.003 0.008 -0.018 0.022

µC 0.010 -0.001 0.001 0.025 -0.012 0.017

µWFC -0.001 0.004 -0.012 0.022 0.003 0.215

µJPM -0.003 -0.004 -0.017 0.014 -0.001 0.09

µAAPL -0.011 0.014 0.008 0.003 0.005 0.369

µIBM -0.008 0.018 0.017 -0.004 -0.011 -0.117

Tuition ($) 17,388 17,675 17,445 17,780 17,658 17,500
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Two-Stage Stochastic Model: Given the above information, we present the
following two-stage stochastic linear program to solve the asset-liability matching
problem:

min
x,x(±)

6∑
i=1

xi +
1

5

5∑
s=1

(
2x(−)s − x(+)

s

)
st.

6∑
i=1

xi ≤ 17500

− x(+)
s + x(−)s +

6∑
i=1

(1 + µi,s)xi = Ts ∀s = 1 . . . 5

x ≥ 0,x(±) ≥ 0

We are interested in comparing in calculating the VSS, so for this we need to
use the deterministic model under the mostly likely scenario in order to deter-
mine our optimal recourse variables. For this purpose, we treat the most likely
tuition liability to be $17,000 which is its expected value and take the expected
returns to be the geometric average of the yearly historical prices.

Which leads us to the deterministic and recourse optimization models.

Deterministic Model: Given the above expected returns, which we shall refer
to below as r ∈ Rn×n, we have

min
x,x(±)

6∑
i=1

xi + 2x(−) − x(+)

st.

6∑
i=1

xi ≤ 17500

− x(+) + x(−) +

6∑
i=1

(1 + ri)xi = 17500

x ≥ 0,x(±) ≥ 0

Recourse Model: Given the first-stage values from the optimal solution of the
deterministic model, we solve the for the optimal recourse values. We shall call
the optimal first-stage variables from the deterministic model x(det).

min
x(±)

1

5

5∑
s=1

(
2x(−)s − x(+)

s

)
st. − x(+)

s + x(−)s = Ts −
6∑
i=1

(1 + µi,s)x
(det)
i ∀s = 1 . . . 5

x(±) ≥ 0
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VSS: To find the VSS, we take the difference between the optimal value of
the recourse and deterministic model with the stochastic model. Note that our
deterministic model solves for the optimal wealth investment in the stocks and
the recourse model solves for the optimal spread of surplus and shortfall wealth.

3 Results

We present our results in table 3. Note that in every case, our optimization
models look to maximize the wealth allocation in the assets with the maximum
return. This is to be expected since there were no cardinality constraints im-
posed to enforce diversification.

Under the stochastic model, in scenario’s two, four and five the asset returns
failed to provide an adequate return and a small shortfall was required in order
to meet the tuition payment. Under the recourse model with the deterministic
first-stage decisions, a shortfall was forced on the strategy in scenarios one, four
and five.

The deterministic model outperformed the stochastic model considerably.
This was due to the fact that the stock ‘AAPL’ has a massive yearly expected
return observed in the calibration period. It is to be expected then that the
deterministic model would run a large surplus. However it is interesting to note
that despite the strength in the deterministic model, the generated scenarios
predicting the stock prices over the investment horizon meant that the recourse
model underperformed the stochastic model.

The VSS was calculated to be $45.21 which indicates that the two-stage
stochastic program was marginally more robust than the deterministic model.
Under perfect information and assuming that the expected returns will be real-
ized, the far superior investment strategy is the pure deterministic model (with-
out then optimizing the recourse with scenarios).

As an interesting exercise, we can track the value of the portfolio recom-
mended by the stochastic model. The results from this tracking is shown in
figure 3. Recall that the investment period for this project was from January to
December 2015, and so the weekly portfolio values was tracked. Despite a strong
performance throughout the secnd and third quarters of 2015, the value of the
portfolio by the end of the investment period dropped down to approximately
where it started at the beginning. This means that the value of the stochastic
program predicted a result that was very close to what was realized.
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Table 3. Optimization Results

stochastic deterministic recourse

F (x1) 0 0 0

C (x2) 0 0 0

WFC (x3) 9,826 0 0

JPM (x4) 0 0 0

AAPL (x5) 7,674 17,500 17,500

IBM (x6) 0 0 0

Surplus x
(+)
1 17.33 - 0

Shortfall x
(−)
1 0 - 87.28

Surplus x
(+)
2 0 - 70.00

Shortfall x
(−)
2 25.77 - 0

Surplus x
(+)
3 0 - 193.60

Shortfall x
(−)
3 0 - 0

Surplus x
(+)
4 0 - 0

Shortfall x
(−)
4 35.85 - 228.24

Surplus x
(+)
5 0 - 0

Shortfall x
(−)
5 86.98 - 68.75

Expected Surplus x̄(+) - 6,457 -

Expected Shortfall x̄(−) - 0 -

Optimal Value 17,560 10,426 17,601
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Fig. 3. The value of the portfolio over the investment period.

4 Next Steps and Improvements

More Assets and Scenarios: For the sake of simplicity, this project focused
on a small basket of assets and a small number of scenarios. Both the number
of considered assets and the scenarios generated can be ramped up in order to
provide the optimization method with a robust option. Increasing the number of
assets provides the investor with a greater degree of choice to select an optimal
investment portfolio over a certain investment period. Increasing the number
of scenarios improves the quality of decision-making under uncertainty by ef-
fectively increasing the sample size of our Monte Carlo simulation. Ideally, such
simulation methods should be run thousands of times in order to best capture the
true variability of the underlying probability distribution. This is a recognized
shortcoming of the results presented in this project.

Probabilities for Scenarios:

This project considered all scenarios generated to be equally likely. This is a
naive approach and can be expanded upon by empirically determining the cor-
responding likelihood of each scenario. The direct benefit that this would have
is improving the performance of expected value taken in the objective of the
stochastic model.
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5 MATLAB Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% the purpose of this project is to implement a two-stage stochastic linear

% program which solves a tuition investment-matching strategy.

% authors: Matthew Reiter and Daniel Kecman

% date: april 11, 2018

clc

clear all

format long

% note that this project is compatible with MATLAB 2015.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1. read input files

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% load the stock weekly prices and factors weekly returns

data = readtable(’price_data.csv’);

data.Properties.RowNames = cellstr(datetime(data.Date));

data = data(:,2:size(data,2));

% n represents the number of stocks that we have

n = size(data,2);

% identify the tickers and the dates

tickers = data.Properties.VariableNames’;

dates = datetime(data.Properties.RowNames);

% calculate the stocks’ yearly returns

prices = table2array(data);

returns = (prices(2:end,:) - prices(1:end-1,:)) ./ prices(1:end-1,:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2. estimation of mean and variance

- we use historial data spanning a year from 2014-01-03 to 2014-12-26

- we use the geometric mean for stock returns and from this we formulate

the covariance matrix
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% calibration start data and end data

cal_start = datetime(’2014-01-03’);

cal_end = cal_start + calmonths(12) - days(2);

cal_returns = returns(cal_start <= dates & dates <= cal_end,:);

current_prices = table2array(data((cal_end - days(7)) <= dates & dates <= cal_end,:))’;

% calculate the geometric mean of the returns of all assets

mu = 52*(geomean(cal_returns+1)-1)’

cov = 52*cov(cal_returns);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mu =

0.022234543556377

0.016788212229012

0.215424745393144

0.089668871728315

0.368991665804218

-0.117177375020920

3. scenario generation

- we use two methods to generate scenarios, seperate for the scenario’s

governing the asset returns and for the matched liabilities

- for asset returns, we model the stock price as a Geometric Brownian

Motion and do a Monte Carlo simulation to estimate stock returns for

our investment period spanning a year from 2015-01-02 to 2015-12-31

- for our liabilties, we sample from a normal distribution

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% we need the correlation matrix to simulate the correlated prices of

% portfolio

rho = corrcov(cov);

% we take the cholesky factorization of the correlation matrix

L = chol(rho, ’lower’);

% define the number of randomized scenarios to sample for

S = 5;
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% our simulated asset prices and returns

sim_price = zeros(n,S);

sim_returns = zeros(n,S);

% our scenario liabilities

sim_liabilities = zeros(S,1);

% we have yearly estimates for returns and we wish to simulate the

% price path after six months using monthly time-steps

dt = 1/252;

% setting the random seed so that our random draws are consistent across testing

rng(1);

tuition = 17000;

for i=1:S

% our random correlated pertubations

epsilon = L * normrnd(0,1,[n,1]);

% randomize our liabilities

sim_liabilities(i) = tuition + normrnd(500,200);

% calculate our simulated prices

sim_price(:,i) = current_prices .* exp((mu - 0.5 * diag(cov))*dt + sqrt(dt)*sqrt(diag(cov)) .* epsilon);

% calculate our simulated returns

sim_returns(:,i) = (sim_price(:,i) - current_prices) ./ current_prices;

end

sim_returns

sim_liabilities

mu

X = 1:n;

Y = 1:S;

mesh(sim_price);

title(’Simulated Prices of Holding Assets’, ’FontSize’, 14)

ylabel(’Asset’,’interpreter’,’latex’,’FontSize’,12);

xlabel(’Scenario’,’interpreter’,’latex’,’FontSize’,12);

zlabel(’Asset Price’,’interpreter’,’latex’,’FontSize’,12);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sim_returns =
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Columns 1 through 3

-0.008810722158627 0.002429376891445 -0.003308027179416

0.010314390970307 -0.001314447845343 0.000519451471810

-0.000725330053245 0.004263153947304 -0.011740993590965

-0.003484681445156 -0.003203387822546 -0.016884886520004

-0.011372618581591 0.014010167086939 0.007861478445295

-0.008396819040902 -0.017296638107479 0.016879572650751

Columns 4 through 5

0.008256261133632 -0.018472327969247

0.025325940962147 -0.011701120780678

0.022563041295995 0.003226072673106

0.014146459532548 -0.001156991816241

0.002982246006717 0.005081971009582

-0.004487692711432 -0.011693004137588

sim_liabilities =

1.0e+04 *

1.738826384710521

1.767517482956691

1.744496855186486

1.778043245726756

1.765768184324549

mu =

0.022234543556377

0.016788212229012

0.215424745393144

0.089668871728315

0.368991665804218

-0.117177375020920

4. stochastic optimization

- implementation of the above scenarios, incorporating second stage and

first stage constraints
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% take uniform probability for each scenario

p = 1/S;

% we have an initial budget of 17,500

B = 17500;

% the benefit of running a surplus will be a 1 and the cost of running a

% shortfall will be -2

surplus = -1;

shortfall = 2;

% formulate our objective function

f = [ones(1,n) repmat(p*[surplus shortfall], 1, S)]’;

% dealing with our first-stage constraints

A = [ones(1,n) zeros(1,2*S)];

b = B;

% handling our second stage constraints

temp = [-1 1];

temp_r = repmat(temp, 1, S);

temp_c = mat2cell(temp_r, size(temp,1), repmat(size(temp,2),1,S));

con = blkdiag(temp_c{:});

Aeq = [(sim_returns+1)’ con];

beq = sim_liabilities;

lb = zeros(n+2*S,1);

ub = [];

[stochastic, sto_value] = linprog(f, A, b, Aeq, beq, lb, ub)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Optimization terminated.

stochastic =

1.0e+03 *

0.000000000003458

0.000000000162112

9.825664873736784

0.000000000004996

7.674335126090030
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0.000000000002647

0.017332016614268

0.000000000000315

0.000000000000260

0.025767790178600

0.000000000001534

0.000000000000410

0.000000000000255

0.035848819672729

0.000000000000254

0.086982785674876

sto_value =

1.755597335488748e+04

5. value of the stochastic solution

- based on the expected values of the returns and the liability

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% first we determine the value of our deterministic problem considering

% only the expected returns and liabilities

% formulate our objective function

f = [ones(1,n) surplus shortfall]’;

% dealing with our first-stage constraints

A = [ones(1,n) 0 0];

b = B;

Aeq = [(mu+1)’ -1 1];

beq = tuition+500;

lb = zeros(n+2,1);

ub = [];

[deterministic, det_value] = linprog(f, A, b, Aeq, beq, lb, ub)

% now we solve the stochastic problem with the first stage variables as

% determined from our deterministic model

% formulate our objective function
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f = repmat(p*[surplus shortfall], 1, S)’;

% no first stage constraints need to be optimized since we are using the

% first stage constraints from the deterministics model

A = [];

b = [];

% constraints tied only to our recourse variables

temp = [-1 1];

temp_r = repmat(temp, 1, S);

temp_c = mat2cell(temp_r, size(temp,1), repmat(size(temp,2),1,S));

Aeq = blkdiag(temp_c{:});

% we update what the required liabilties must be with the given first stage

% variables set

beq = sim_liabilities - (sim_returns+1)’*deterministic(1:n);

lb = zeros(2*S,1);

ub = [];

[recourse, recourse_value] = linprog(f, A, b, Aeq, beq, lb, ub)

vss = recourse_value + sum(deterministic(1:n)) - sto_value

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Optimization terminated.

deterministic =

1.0e+04 *

0.000000000375794

0.000000000369828

0.000000000948572

0.000000000471212

1.749999997491551

0.000000000267190

0.645735414552603

0.000000000166827

det_value =

1.104264585705196e+04

Optimization terminated.

17



recourse =

1.0e+02 *

0.000000004489412

0.872846732459476

0.700030935865708

0.000000002586185

1.926073200688687

0.000000002531623

0.000000001955387

2.282431527855161

0.000000005460195

0.687473521286146

recourse_value =

1.011879884995559e+02

vss =

45.214632853530929

6. tracking performance of stochastic model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% testing period start date and end date

test_start = cal_end + days(1);

test_end = test_start + calmonths(12) - days(2);

% subset the prices corresponding to the current out-of-sample test period.

period_prices = table2array(data(test_start <= dates & dates <= test_end,:));

% the current value of our stock portfolio is the sum of all the wealth we

% allocate to each stock

current_value = sum(stochastic(1:n));

% get the prices of our assets at the beginning of our tracked period

current_prices = table2array(data((test_start) <= dates & dates <= test_start,:))’;

% calculate the number of shares of each stock to purchase
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shares = stochastic(1:n) ./ current_prices;

% weekly portfolio value during the out-of-sample window

portfolio_value = period_prices * shares

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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