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Abstract

A trader who needs to sell or purchase a large quantity of shares has to decide
on an execution strategy to follow. A rational trader would strive to realize the
optimal trading policy which returns the largest profits whilst striking a balance be-
tween price impact risk and price uncertainty risk. To make informed decisions, the
trader needs to understand and take into account the complicated market factors
that drive the price of securities on a real exchange. The study of Order Execution
formalizes the models and optimization objectives which arise from profit maximiz-
ing trading incentives. Owing to the complexity however, traditional approaches
for Order Execution are plagued by intractability under generalized conditions. An
alternative method is to leverage the capabilities of Deep Reinforcement Learning,
and train an autonomous agent to trade optimally under complex market dynamics,
all with reduced modelling assumptions.
The culmination of this thesis develops an Asynchronous Advantage Actor-Critic
model that trains an agent to perform Volume-Weighted Average Price execution.
The agent achieves modest profits, and further shows evidence of tracking to the
price target. The application of Deep Reinforcement Learning to Order Execution
is fortified by two supplementary topics; the first relating to Transfer Learning
and the second, covering a models-dependent approach to Order Execution. The
treatment of Transfer Learning demonstrates that a reference Deep Reinforcement
Learning model can be trained more efficiently under a Teacher/Student learning
framework. Specifically, the Student model is shown to learn at an accelerated rate
when given parameter preinitialization from the Teacher, in addition to receiving
both an advice and observation stream in the decisioning network. The models-
dependent approach to Order Execution is achieved under a transient price impact
model, and the solution gives insight into how economic factors – market depth,
resilience, tightness and bias – influence optimal trading decisions. The approach to
solve the optimal liquidation objective on the transient price impact model is first
done through Quadratic Programming and then through the Calculus of Variations,
demonstrating a simple, yet robust method.
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Executive Summary

In studying an application of Deep Reinforcement Learning for Order Execution, we
address three topics of work and arrive at recommendations for each.

The first topic in this thesis deals with Teacher/Student learning models. Under
the Teacher/Student learning framework, a Teacher model is first trained to perform
a comparable, but different, task to the one that a Student model must learn. Two
schemes are devised – the Advice-Driven decisioning approach and the Advice & State-
Driven decisioning approach – which outline how the Student model handles advice and
transferred knowledge from the Teacher. The intended result is to capture a reduction in
the time that it takes to train the Student model.

I Recommendation 1: For the Teacher/Student learning problem, it is effective
to initialize the Student model with the network parameters from the Teacher model.
Additionally, a significant reduction in training time is observed under the Advice & State-
Driven decisioning approach – that is, when the Student model receives both Teacher-
recommended advice and an observation on the state as feature inputs.

The second topic studies Optimal Liquidation under a transient price impact model.
The price dynamics lead to the derivation of a mean-variance optimization problem that
maximizes a trader’s risk-adjusted liquidation wealth. The motivation for studying the
transient price impact model is to arrive at an intuitive understanding of how various
market factors – depth, resilience, tightness and bias – influence optimal trading decisions.

I Recommendation 2: The transient price impact model can be solved in discrete-
time, and further studied with continuous-time representation, to characterize a richly
diverse set of optimal trading policies under different agent- and market-specific factors.

The last topic introduces Volume-Weighted Average Price (VWAP) execution within
the context of Deep Reinforcement Learning and specifically, an Asynchronous Advan-
tage Actor-Critic (A3C) model. The methodology presents three training environments
that are conducive to the model and outlines the training scheme that performs Order
Execution with VWAP as a benchmark execution price.

I Recommendation 3: The A3C model is able to modestly track VWAP, but un-
derperformed by three basis-points on average during testing. The limitations of the mod-
elling scheme introduce an opportunity to consider an enhanced reward signal, whereby
an Advice & State-Driven learning model is a prime candidate for supplemental training.
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Chapter 1

Introduction

The subject of Deep Reinforcement Learning continues to receive widespread attention
from academics and practitioners alike. With the rapid pace of development, the dedi-
cation to the subject lies in the prospect of leveraging Artificial Intelligence to capture
operational efficiencies and improve the scalability of data-driven systems. As technol-
ogy continues to improve in terms of processing capabilities, the applications for Deep
Reinforcement Learning will become more common and drive new business solutions.

This thesis deals with an application of Deep Reinforcement Learning as it pertains to
Order Execution. Order Execution describes a general class of problems where a trader is
tasked with purchasing or liquidating a target number of shares while minimizing trans-
action costs and uncertainties in the execution price. Technicalities in the execution of
trades result from the microstructure of financial markets, distinctly due to the dynamics
that govern the interactions between intermediaries. Transaction costs pose a threat to
profit-generating trading strategies, and in response financial institutions dedicate com-
putational resources and research focus to mitigate adverse market impacts. Academics
studying analytical solutions to Optimal Order Execution problems borrow from topics
in Stochastic Control to model the intricate relationships that dictate market factors
such as liquidity, price evolution and resiliency. Alternatively, an approach leveraging
Deep Reinforcement Learning forgoes the complicated models upfront and banks on the
concept of embedding the optimal-handling of these market dynamics in the decisioning
of an autonomous agent. In devising an application, this work studies the feasibility of
Deep Reinforcement Learning as it applies to Order Execution.

Additionally, this work studies the intrinsic value of a trained model in terms of
what domain-specific information can be transferred to a relatable setting. This attempt
at Teacher/Student learning, a branching topic in the subject of Transfer Learning, is
applied to several Atari 2600 arcade games prior to suggesting an application within
the context of Order Execution. The subject of Transfer Learning similarly carries large
appeal for the sake of efficient training and has been considered by Andrew Ng, chief
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scientist at Baidu and professor at Stanford, to be “the next driver of commercialized
machine learning success.”1

1.1 Context and Motivation

This project has been completed with support from the Centre for Management of Tech-
nology and Entrepreneurship (CMTE) at the University of Toronto. The primary sponsor
for this research is a prominent Canadian financial institution, one that is providing Deep
Reinforcement Learning-based solutions to enhance a prime brokerage service offering.
Henceforth, any reference made to the sponsoring financial institution shall be done by
addressing “the Bank”.

Work for this thesis has been completed over an academic period beginning in May
2019and ending in April 2020, with planning and preparation dating back to February
2019. Serving as a required credit for the completion of the BASc degree in Engineer-
ing Science at the University of Toronto, material for this work has been delivered in
accordance to the requirements and guidelines defined in ESC499Y1. Resources, both
computational and in counsel, have been made available without barrier by the CMTE,
the Bank and the Division of Engineering Science, and the Faculty of Applied Science
and Engineering at the University of Toronto.

1.2 Objectives

The objective of this thesis is to efficiently solve an Order Execution objective through a
Deep Reinforcement Learning approach. In doing so, a Teacher/Student learning frame-
work is studied in supplement, to demonstrate how a reference model can be trained
more efficiently and in less time. We further support the Order Execution analysis with
a review of Optimal Liquidation under a transient price impact model. Given in detail
below are the three primary objectives.

1. The first objective is to demonstrate that a Teacher/Student learning framework
can train a reference model, referred to as a Student, at an accelerated rate when
compared to a baseline model. An Asynchronous Advantage Actor-Critic algo-
rithm was utilized and training occurred on three emulated Atari 2600 arcade
games: Breakout, Beamrider and Space Invaders. To demonstrate the application
of Teacher/Student learning, the Teacher models were trained for each environment
under a modified reward signal. Then, two variants of Student learners were defined,
both accepting advice from the Teacher and one incorporating a state-observation
stream that supports the preinitialization of network parameters from the Teacher.

1NIPS 2016 tutorial entitled “Nuts and bolts of building AI applications using Deep Learning”
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By demonstrating the effectiveness of Teacher/Student learning, the main result
secured a computationally efficient training scheme that is suggested for an exten-
sion to the Deep Reinforcement Learning model for Order Execution. Work for this
objective is covered in chapter 2 and the discussions provide additional commentary
about reward signal engineering and hyperparameter tuning.

2. The second objective motivates the Order Execution task by studying Optimal Liq-
uidation under a transient price impact model. As a models-dependent approach
to Order Execution, a variant of the block shaped limit order book is studied with
coupled price dynamics for the bid- and ask-price processes that account for mar-
ket liquidity and resiliency factors. The optimization problem is formulated in
continuous-time for a trader with constant absolute risk-aversion and correspond-
ingly, the optimization problem assumes the common form of a mean-variance max-
imization for liquidation wealth. The second objective is detailed in chapter 3.

Original contributions include: taking a discretization to numerically solve the
system as a Quadratic Program, taking a limit of the discrete model under simplify-
ing conditions to verify results from [4], and formulating a continuous-time solution
with dynamics similar to the results from [59]. The results outline a numerically
feasible routine for the optimal scheduling of a share liquidation program. Many of
the insights then carry directly forward into the final objective with this work.

3. The final objective is the application of Deep Reinforcement Learning for Order
Execution. The supporting mechanism is drawn from an Asynchronous Advantage
Actor-Critic model. To facilitate the training of the model, three distinct trading
environments were developed that extend the classes provided by OpenAI 2. The first
environment derives from the block shaped limit order book studied in chapter 3,
the second environment utilizes historical data from the Nasdaq stock exchange,
and the third environment is based on an interactive simulated trading platform
maintained by the Rotman School of Management at the University of Toronto.
The environments have also been utilized by a colleague for a different application.
All work pertaining to this last objective is found in chapter 4.

The methodology introduces the Deep Reinforcement Learning model. Within
the context of Order Execution, the agent is trained to realize an execution price
that matches or bests the Volume-Weighted Average Price (VWAP) over the exe-
cution horizon. Defining an appropriate reward signal proves critical to the agent
learning an effective liquidation strategy, and a Time-Weighted Average Price (TWAP)
tracking incentive is used as a baseline for the reward signal. Connections to the
material studied in chapter 2 cover the adaptation of a Teacher/Student scenario
for Order Execution and a recommendation is provided as to how such a model
may be implemented.

2https://gym.openai.com/
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Chapter 2

Deep Reinforcement Learning and
Teacher/Student Learning

The content in this chapter centres around Teacher/Student learning models. The fun-
damental background and related literature is introduced in section 2.1, providing a
high-level summary of fundamental concepts. Notational conventions will also be intro-
duced this section, thereon defining the standard that carries forward throughout this
body of work.

The methodology portion is detailed in section 2.2, which presents the Deep Rein-
forcement Learning structure and covers the training schemes for the Teacher and Student
models. The models in this chapter are trained on three Atari 2600 arcade games, and the
learning curves are given in section 2.3 with an accompanying discussion. The chapter
concludes with section 2.4, on a note recognizing areas of improvement and suggesting
future adaptations to the Teacher/Student learning framework.

2.1 Background

2.1.1 Deep Learning

Deep Learning describes a class of models which attempt to learn a functional mapping
between an input and output space. Deep Learning approaches fall under the larger do-
main of Machine Learning, and as a result there are several inherited concepts, including
the very nature of what it means to learn. Within the context of Machine Learning, a
well-posed learning problem may be characterized by the following quoted-definition:

Definition 2.1.1 A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T , as
measured by P, improves with experience E. [86]

5



Definition 2.1.1 offers insight and even hints towards a modular approach when it
comes to designing and implementing Machine Learning algorithms. While there is no
single routine for a design approach, there are generally three steps to follow and be
mindful of:

1. The design approach typically begins by selecting a model which is believed to cap-
ture a systematic relationship between features, which are the inputs to the model,
and targets, which are the intended outputs of the model. Machine Learning prob-
lems are wide-ranging, in part, due to the flexibility in choosing different models.
When subjugating Deep Learning problems, the model structure is typically a vari-
ant of a Neural Network structure.

2. When a model structure is chosen, the natural progression is to quantify the defi-
ciency of the model, or put in other words, how poorly the model is able to capture
the relationship between features and targets. The measure of fit is referred to
as a loss function and also offers a significant degree of freedom when outlining a
Machine Learning algorithm.

3. The last guideline is to follow an optimization routine which attempts to improve
the model’s performance by minimizing the loss function. An optimization scheme
may be analytically derived; however, a numerical solution is commonly adopted
due to the complexity of the model and constraint-space.

In relating back to Definition 2.1.1: the “experience E” refers to the data under which
the model is trained to; the “class of tasks T ” and “the performance measure P” describe
the model’s objective and loss function respectively; and the model “improving with
experience E” connotes the optimization to minimize the loss. Certainly there are other
interpretations, but as a starting point Definition 2.1.1 will be helpful to consider as we
advance discussions on Deep Learning.

Due to the data-intensive nature of designing a Deep Learning model, specifically
in regards to the dimensionality and scope of the input space, the computational ex-
pense is often large. Navigating this challenge continues be simplified owing to recent
advances in technological systems and processing capabilities, proving the effectiveness
of Deep Learning in areas such as Image Classification [3], Speech Recognition [2] and as
we will soon cover, Reinforcement Learning. Deep Learning models, specifically Neural
Networks, demonstrate promise due to their vast expressiveness, deriving from an ability
to universally approximate functions to an arbitrary level of precision [6][5][24][60].

2.1.1.1 Feedforward Neural Networks

Feedforward Neural Networks (FNN’s) remain one of the central tenants to a Deep Learn-
ing model. Inspired by the neural pathways in the animal brain, the functional units in
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an FNN are referred to as perceptrons which are arranged sequentially in a series of
fully-connected layers. The input layer is directly exposed to the features and the in-
ternal “hidden” layers are fully connected to the perceptrons of the previous layer. The
computation performed by each perceptron is an affine transformation of all the sources
of input.

Figure 2.1.1 presents a simple example of an FNN with two feature inputs, and
a single hidden layer with three perceptrons providing output to a single quantity. In
further reference to the structure of the FNN – and unless otherwise specified – we will
refer to a collection of perceptrons by their layer, we will treat inputs as corresponding
to all perceptrons in the previous layer, and we will take outputs as all perceptrons in
the following layer.

x1

x2

h1

h2

h3

y

Hidden
layer

Features Output

Figure 2.1.1: An example of a Feedforward Neural Network with a single output given from two
input features and one hidden layer.

Note that the structure of an FNN is analogous to a directed, acyclic graph. Cor-
respondingly, the connecting edges between layers are prescribed weights w(k)

ji ∈ R. For
clarity, w(k)

ji is the weight for the edge connecting perceptron j in layer k to the input
perceptron i. If the hidden layer k contains K perceptrons, then we express the vector
h(k) = (h(k)

j ) ∈ RK and if the input layer contains I inputs, then we express the vector
h(k−1) = (h(k−1)

i ) ∈ RI . For this vectorized setup, the accompanying weights are expressed
in a matrix W(k) = (w(k)

ji ) ∈ RK×I . Then for Figure 2.1.1, the affine transformation for
the hidden layer may be written

h(1) = φ(1)
(
W(1)x + b(1)

)
With bias term b(1) = (b(1)

j ) ∈ R3 and activation function φ(1) : R → R. The bias
offset may be viewed as another input dimension and the activation function, in a general
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sense, provides an additional feature-mapping to control the range of the output. Several
common activation functions are presented in Figure 2.1.2, all of which are utilized in
the networks constructed in section 2.2.

Figure 2.1.2: Common activation functions used in Neural Network structures.

The weights and biases for all layers in an FNN are the parameters which need to be
optimized to tune the performance of the model. In doing so, we introduce the concept
of Backpropagation.

2.1.1.2 Backpropagation

Recall that a loss function is the performance metric for a Machine Learning model which
quantifies how poorly the model performed at its task. In a Supervised Learning setting,
features are accompanied with corresponding labels, or “true” output values, in which
case the loss function may be taken, for example, as the mean-squared error. However in
a different context, as we will soon discuss within the realm of Reinforcement Learning,
the loss function must be crafted against a different and more subtle heuristic. For this
reason, we proceed by allowing for a general definition of the loss function L : (y;H)→ R,
which scores the model’s output y against the heuristic H.

8



Once again using Figure 2.1.1 as the basis for an example, the output y is written:

y = φ(2)
(
W(2)h(1) + b(2)

)
= φ(2)

(
W(2)φ(1)

(
W(1)x + b(1)

)
+ b(2)

)

This reveals how the network’s output acts a functional composition of the hidden
layers. Then, within the scope of minimizing the loss function, gradients with respect to
the network’s parameters may be computed using the chain rule. This however poses a
computational challenge since as the network grows in complexity, the number of gradi-
ents to compute becomes large. This computational hurdle is what backpropagation [23]
addresses. The backpropagation algorithm offers an efficient way to calculate the gradi-
ents in a network and follows quite naturally from an understanding of the chain rule.
The algorithm begins after first completing a forward pass through the network, which
serves the purpose of calculating the loss through the layers. For the network shown
in Figure 2.1.1, the forward pass and the accompanying backpropagation is presented
below:

Forward Pass:

h(1) = φ(1)
(
W(1)x + b(1)

)
y = φ(2)

(
W(2)h(1) + b(2)

)

Backpropagation:

∂L
∂W(2) = ∂L

∂y

∂y

∂W(2)

∂L
∂b(2) = ∂L

∂y

∂y

∂b(2)

∂L
∂h(1) = ∂L

∂y

∂y

∂h(1)

∂L
∂W(1) = ∂L

∂h(1)
∂h(1)

∂W(1)

∂L
∂b(1) = ∂L

∂h(1)
∂h(1)

∂b(1)

Following the backpropagation approach, gradients are first computed at the output
level then computed for each feeding layer there prior, thus propagating errors back to
the start of the network. The optimization of the parameters still relies on an update
rule and guideline, of which the standard routine is gradient descent [75]. The update
rule for gradient descent with respect to parameter W(k) is presented immediately below:

W(k) ←W(k) − α ∂L
∂W(k)

Gradient descent is an iterative approach with the learning rate α being a parameter
that controls the rate at which an update proceeds along the direction indicated by the
gradient. The learning rate is treated as a hyperparamter, and the tuning of which poises
a tradeoff between computational overhead and numerical stability. Gradient descent is
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considered a baseline because it captures the theme of numerical optimization, however,
computing the gradient for the update requires batch training over the entirety of training
dataset. Even with backpropagation, a large training dataset will lead to computational
inefficiencies for batch training approaches that ultimately culminate to an infeasible
training scheme.

The practical solution is mini-batch training, and forms the basis for a common adap-
tation of Stochastic Gradient Descent. Stochastic Gradient Descent with mini-batch
training involves computing gradients over a smaller, randomly sampled subset of the
training data. The justification for this sampling approach rests from the fact that the
stochastic gradient will be an unbiased estimator for the batch gradient provided that
batch-sampling is conducted uniformly at random.

In addition to Stochastic Gradient Descent, other optimization variants include RM-
Sprop [85] and Adam [51], which are both designed around the concept of adaptively con-
figuring learning rates. Adaptive models have become popular as of late due to empirical
results that demonstrate efficient computation and near-guaranteed outperformance of
the benchmark models which they approximate [20]. Relevant to this body of work is
Adam – the optimizer of choice for the models presented in section 2.2 – which works to
configure learning rates on a per parameter basis.

Up until this point, discussions on Neural Networks and the optimization of their
parameters have been limited in scope, and in example, to FNNs. However, there remains
several other variants of Neural Network structures commonly used in Deep Learning
methods, where the techniques of backpropagation and numerical optimization certainly
still apply. In turn, the upcoming topic for background discussions are Long Short-Term
Memory Cells.

2.1.1.3 Long Short-Term Memory Cells

FNN’s are acylic, and as a result, information flows through the network in a single
direction. When directed cycles are introduced, the resulting network is referred to as
a Recurrent Neural Network (RNN) [93]. RNN’s are well suited to address tasks which
require a component of sequence recognition, such as Natural Language Processing [96], or
has an input with temporal dependence, as in time series forecasting [41]. The structure
of an RNN may be “unravelled”, as shown in Figure 2.1.3, to visualize the flow of
information through the network.

10
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Figure 2.1.3: An unravelled Recurrent Neural Network.

Resulting from the sequential dependence, RNN structures carry a memory of the
input which allows for previous information about the cell state to persist. However,
when previous information becomes stale, the internal structure of a Long Short-Term
Memory Cell (LSTM) can facilitate the network “forgetting” the stale information and
focus inference from more recent input data [42]. The structure of an LSTM is shown in
Figure 2.1.4. Each cell receives input data xt in addition to the network’s previous state
ct−1 and output state ht−1.

There are three gates in the structure of an LSTM. The first is responsible for dictating
which information is forgotten from the network, taking ht−1 and xt as inputs. The output
ft, receiving a sigmoid activation, passes through to a hadamard product on ct. The next
gate consists of two operations with the purpose of proposing a candidate state ĉt which
is to be amended, through addition, to the previous modified cell state value ft ◦ ct−1.
The last gated operation involves formulating the output ht by taking another hadamard
product on the now final cell state ct, with sigmoid-activated weighted selections of ht−1

and xt. The described operations are summarized below:

ft = σ
(
W(f)

h ht−1 + W(f)
x xt + b(f)

)
it = σ

(
W(i)

h ht−1 + W(i)
x xt + b(i)

)
ĉt = tanh

(
W(ĉ)

h ht−1 + W(ĉ)
x xt + b(ĉ)

)
ct = ft ◦ ct−1 + it ◦ ĉt
ot = σ

(
W(o)

h ht−1 + W(o)
x xt + b(o)

)
ht = ot ◦ tanh (ct)

LSTMs are not the only type of gated RNN, with various other structures generalized
as Gated Recurrent Units (GRUs) [19]. Additionally, other variants incorporate informa-
tion bidirectionally [35]; however, for the material introduced in section 2.2, the LSTMs
as described above will be utilized.
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Figure 2.1.4: A diagram of an LSTM cell.

The final Deep Learning construct that will be covered in this section is the Convo-
lutional Neural Network.

2.1.1.4 Convolutional Neural Networks

By performing a convolution operation on input data, a Convolutional Neural Network
(CNN) is able to infer proximal and spacial relationships in the feature space. An example
of a two-dimensional, one-stride convolution operation with a (3×3) kernel is provided in
Figure 2.1.5. From this view, the convolution operation works by striding over subsets
of the input and applying a weighted-sum to produce an output. The weights given
by the kernel are the parameters that the network is trained to optimize. One notable
efficiency with convolutional networks is that weights are shared – given at each layer on
a kernel-basis – and thus keeps the number of parameters bounded by the dimension of
the input, as realized in a degenerate case with a unit kernel.

CNNs are typically constructed by sequencing together several convolutional layers.
Other common techniques such as max-pooling may also be applied, however, researchers
in [84] demonstrate this is not required to achieve good performance. CNNs have become
a staple in tasks pertaining to image classification, owing to the sweeping success of [3],
but various methodologies and justifications exist to apply CNNs on non-image input data
[80] [98], which becomes relevant in chapter 4 when we study Order Execution models.
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Figure 2.1.5: An example of a convolution operation applied to an input matrix.

While the subject of Deep Learning is far more comprehensive than this summary leads
on, the introductory background will be sufficient to introduce and understand the models
used in the rest of this work. As we now take strides towards addressing the subject of
Deep Reinforcement Learning, our attention first shifts to cover the fundamentals of
Reinforcement Learning.

2.1.2 Reinforcement Learning

The principle objective behind any Reinforcement Learning application is to teach an
agent, capable of interacting with her environment, how to perform an outlined task
optimally by maximizing some notion of a cumulative reward. The setup is captured by
a Markov Decision Process (MDP), as specified by the attributes (S,A, r, p, ν), where:

• S is a finite set providing the State Space for the environment;

• A is also a finite set giving the Action Space, which define the valid interactions
that the agent may take with the environment;

• r : S ×A×S → R is the reward signal which scores the result of an action against
some heuristic;

• p : S ×A → [0, 1] denotes a transition probability where

pa(s, s′) = P(st+1 = s′|st = s, at = a)

measures the probability of transitioning from state s to s′ after performing action
a at time t;

• ν : S → [0, 1] provides the initial probability distribution for each state.
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Together, these ingredients define an environment and specify how the permitted
interactions can be made. The mechanism driving the agent’s interactions with the
environment is referred to as a policy function π : S → A, and is parameterized by
domain-specific data θ. The end-to-end process for Reinforcement Learning is visualized
in Figure 2.1.6 below:

Environment

Action Space

at ∼ πθ(·|st)

Reward Signal

st

rt

Actor

Figure 2.1.6: A simple model for a Reinforcement Learning process.

When the agent acts according to at ∼ πθ(·|st) over the time horizon τ , the collection
of actions form a trajectory X = {a0, a1, . . . , aτ}. Over a given trajectory, the agent
interacts with her environment and receives feedback in the form of a reward signal. The
reward signal plays an important role in providing an incentive for the agent to improve
her performance. To this effect, for a given trajectory X, the cumulative discounted
return is

R(X) =
τ∑
t=1

γtrt

Where γ ∈ [0, 1] is a discount factor applied to future rewards. The basic premise
behind applying a discounting factor is that immediate returns should be prioritized over
delayed returns. From a mathematical perspective, keeping γ ∈ [0, 1] also helps ensure
convergence with many Reinforcement Learning algorithms, especially in the cases when
τ →∞ as with continual-learning agents.

For a trajectory X consisting of finite-steps up to τ , the probability of the occurrence
is given by the Markovian τ -step transition probability

P(X|π) = ν(s0)
τ−1∏
t=0

P(st+1|st, at)πθ(at|st) (2.1.1)
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Which then immediately facilitates the expectation of the cumulative discounted re-
turns being

EX∼π
(
R(X)

)
=
∫
X
P(X|π)R(X) (2.1.2)

The expected cumulative return may very well become the subject for maximization
with respect to the policy π. This, in effect, works to optimize the decisioning of an agent
following the policy, so as to accumulate the greatest sum of returns. Exactly how this
expectation is maximized can be viewed from two perspectives. For the optimal policy
π∗, the optimal value function V ∗ and the optimal action-value function Q∗ are expressed

V ∗(s) = max
π

Eπ
(
R(X)

∣∣∣s0
)

(2.1.3)

Q∗(s, a) = max
π

Eπ
(
R(X)

∣∣∣s0, a0
)

(2.1.4)

Intuitively Equation 2.1.3 and Equation 2.1.4 differ in that Q∗ incorporates the
initial action taken by the agent. It follows that V ∗(s) = maxaQ∗(s, a). In light of
this property, both V ∗ and Q∗ respect an important self-consistency principle that comes
from classical Control Theory. The term “optimal control” arose in the 1950’s when
researchers began focusing on minimizing functions which describe dynamical systems
[71]. One of the main contributions Control Theory came from Richard Bellman [70],
who introduced the Dynamic Programming (DP) that outlines a recursive formulation
under which Equation 2.1.3 and Equation 2.1.4 may be written

V ∗(s) = max
a

Es′∼p
(
r(s, a) + γV ∗(s′)

)
(2.1.5)

Q∗(s, a) = Es′∼p
(
r(s, a) + γmax

a′
Q∗(s′, a′)

)
(2.1.6)

Equation 2.1.6 states that under an optimal policy, the optimal action-value can be
decomposed into an immediate reward contribution plus the benefit yet to be realized
over the remaining trajectory. The DP Principle applies directly to discrete systems,
whereas the continuous analog takes the form of a partial differential equation referred
to as the Hamilton-Jacobi-Bellman (HJB) equation [46].

Reinforcement Learning calls for a balance between state-exploration and reward-
exploitation. The principle objective remains to maximize the expected rewards; how-
ever, the agent needs to first accumulate a wealth of experience interacting with her
environment in order to learn how to act optimally. Solving the exploration/exploitation
tradeoff is at the heart of all Reinforcement Learning applications, and was solved for the
classic “Multi-arm Bandit” example by John Gittins in 1979 [33].
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2.1.2.1 Policy Optimization versus Q-Learning

When performing Reinforcement Learning, the learning objective may be supported by
either optimizing policies or Q-functions [22]. Policy optimization tackles the learning
task directly by optimizing the parameters θ which maximize the expected performance of
πθ. Policy optimization usually involves computing estimates for V ∗, but other approaches
involving surrogate functions may also be adopted [79] which can be lightweight and easily
scaled.

On the other hand, Q-Learning is supported by estimating approximators for the opti-
mal action-value function Q∗. Then, by applying the Bellman Principle (Equation 2.1.6),
iterative updates motivate optimal decisioning from the agent that result from the actions
which maximize the Q-function, at = arg maxaQπ(s, a). Q-Learning gives rise to one of
the most famous and conceptually important Reinforcement Learning algorithms, and is
presented below:

Algorithm 1 Q-Learning [92]
Initialize Q(s, a) and π randomly
repeat

Initialize s
repeat

Choose a from s using π
Take action a, collect r, observe s′
Q(s, a)← Q(s, a) + α

(
r + γmaxaQ(s′, a)−Q(s, a)

)
s← s′

until s is terminal
until no episodes remaining

Policy optimization is usually conducted on-policy, whereas Q-Learning, as given
above, is an off-policy approach. The difference between an approach being on- and
off-policy results from how the data, pertaining to either the action-values or the policy
itself, is used to develop subsequent updates. Specifically, on-policy methods utilize the
most recent version of the policy whereas off-policy methods utilize data collected over the
entire trajectory. An experience replay buffer may be introduced to adapt an on-policy
method into a hybrid approach, such as the case with [15]. Utilizing an experience replay
buffer has become a common approach in various Deep Reinforcement Learning adapta-
tions of Q-Learning, to help bring about stability and improvements when prioritizing
learning experiences.

2.1.2.2 Generalized Advantage Estimation

We revisit policy optimization with the objective of reviewing a family of policy gradient
estimators. As an item of notation, we will express the gradient operator with respect to
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parameter θ as ∇θ. Then, the gradient of Equation 2.1.1 may be written

∇θP(X|π) = P(X|π)∇θ logP(X|π)

And thus, the gradient of Equation 2.1.2 becomes

∇θEX∼π
(
R(X)

)
=
∫
X
∇θP(X|π)R(X)

=
∫
X
P(X|π)∇θ logP(X|π)R(X)

= EX∼π
(
∇θ logP(X|π)R(X)

)
= EX∼π

( τ−1∑
t=0
∇θ log πθ(at|st)R(X)

)

With the gradient in hand, the parameters θ are optimized by performing the following
gradient ascension

θ ← θ + α∇θEX∼π
(
R(X)

)
Whereas the formulation shown above uses discounted rewards R(X) as an incen-

tive, other functions such as the advantage function Aπ, offers related performance-
incentivizing interpretations. The advantage function is defined as the difference between
the action-value function Qπ and the value function V π,

Aπ(st, at) = Qπ(st, at)− V π(st)

Which scores the benefit of performing a particular action given all of the possibilities
that the agent could have chosen in the current state. Utilizing the advantage function
has become common for defining policy estimators for many Actor-Critic algorithms, such
as the one we will soon introduce. When it comes to estimating the advantage function,
the Generalized Advantage Estimator (GAE) was introduced in [78], and is defined as

Â
GAE(γ,λ)
t =

∞∑
k=0

(γλ)k
(
rt+k + γV π(st+k+1)− V π(st+k)

)

For parameter λ ∈ [0, 1]. The estimation of the advantage function above then directly
facilitates taking a sample mean to estimate the policy gradient ∇θEX∼π

(
Aπ(X)

)
.

2.1.2.3 Asynchronous Advantage Actor Critic

The work to introduce policy gradient estimators, and specifically the GAE, was done
with the intention of making a connection to the Asynchronous Advantage Actor Critic
(A3C) algorithm [90]. The A3C algorithm, like other Actor-Critic models, maintains
both a policy estimate and a prediction for the value function. Where A3C differs from
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other approaches is in the support for multiprocessing; each sub-process inherits global
parameters for the policy and value function, and independently gathers experience to
inform updates on the shared parameters. Each sub-process then asynchronously relays
parameter updates back to the global model, and the cycle begins anew. A3C was
introduced on an n-step ahead basis, providing each Actor-Critic sub-process with an
n-step window to collect rewards and values, as aggregated to provide an estimate for
the advantage function. The A3C algorithm is shown below in Algorithm 2. A diagram
of the overall A3C routine is also given in Figure 2.1.7.

A3C models tend to observe reduced training times over non-parallel Actor-Critics,
with a time reduction that is approximately linear in the number of sub-processes. The
authors of [90] also remark on, and observe, the improvements to learning-stability which
is brought forth by having multiple agents independently learn policy and value updates.
Also from a computational resource perspective, A3C runs efficiently on a computing
device with multiple dedicated cores, and for this reason, is well-suited for general use
over algorithms which are best performed under a GPU. For this work, the A3C model
has been adapted to run for both CPU-only machines and instances with multiple GPUs.

Algorithm 2 Asynchronous Advantage Actor Critic [90]
Inherit shared global parameters θ, θv and common global counter T = 0
Initialize process-specific parameters θ′, θ′v
Initialize process step counter t← 1
repeat

Reset gradients dθ ← 0, dθv ← 0
Synchronize process-specific parameters θ′ ← θ, θ′v ← θv
tstart ← t
repeat

Choose at from st using π
Take action at, collect r, observe st+1
t← t+ 1
T ← T + 1

until st is terminal or t− tstart reaches the maximum step count

R =
0 st terminal
V (st, θ′v) otherwise

i← t− 1
repeat
R← ri + γR
dθ ← dθ +∇θ′ log π(ai|si; θ′)

(
R− V (si, θ′v)

)
dθv ← dθv + ∂

∂θ′v

(
R− V (si, θ′v)

)2

i← i− 1
until i < tstart
Asynchronous updates of shared global parameters

until T > maximum time for the episode
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Figure 2.1.7: Diagram of an A3C network.

Having covered A3C, the required background for Reinforcement Learning has been
introduced. Our final discussion topics now turn to connecting the subjects of Deep
Learning with Reinforcement Learning and then motivating examples of Transfer Learn-
ing.

2.1.3 Deep Reinforcement Learning

The subject area Deep Reinforcement Learning comes about when Deep Learning so-
lutions are utilized to facilitate a Reinforcement Learning objective. Among the most
influential contributions to Deep Reinforcement Learning came from the introduction of
Deep Q-Networks (DQN) [58], which was the first approach that utilized a Neural Net-
work to approximate the action-values used in Q-Learning (Algorithm 1). At the time of
introduction, DQN achieved state-of-the-art performance on six Atari 2600 arcade games
with “no adjustment of the architecture or hyperparameters” [58]. The performance of
DQN, in combination with the lack of required network tuning, firmly demonstrated that
Deep Learning can successfully facilitate Reinforcement Learning. DQN however was
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not without flaws, particularly in a tendency to overestimate action-values, thus motivat-
ing the following development which introduced Double-Deep Q-Networks (DDQN) [88].
DDQN uses an on-policy Neural Network to first select an action from which a second,
off-policy Neural Network, scores the value used for parameter estimates. The addition
of the second Neural Network reduces the bias and in turn, brings about greater stability
and performance improvements over DQN.

Dueling Networks were introduced in [91] and split the typical DQN network into
two components or “streams”: the first stream estimates the state-value and the second
estimates advantages for each action. Dueling Networks were considered better-suited
adaptations for Reinforcement Learning tasks due to the architecture’s support for learn-
ing values separately from learning actions. Dueling Networks can be supported with
complementary practices in the field of Deep Reinforcement Learning, such as utilizing a
Priority Experience Replay (PER) [76]. Experience buffers were briefly alluded to in sec-
tion 2.1.2.1 as a way for on-policy Reinforcement Learning algorithms to leverage training
experience in an off-policy way. However, not all the experience collected by an agent is
useful and should be prioritized as such. This is the insight offer by PER, which presents
a prioritization of the agent’s experience based on the expected contribution to future
learning.

There remains a wealth of literature that introduces new and proficient Deep Rein-
forcement Learning approaches, many of which build upon the successes of each other.
To this tune, Rainbow Learning [40] was engineered with goal of hybridizing the method-
ologies from DDQ, Dueling-Networks, PER and Distributional Q-Learning [9], boasting
record performances as justification.

Whereas all methods discussed so far attempt Deep Reinforcement Learning using
a Q-Learning based approach, there are effective alternatives, such as Proximal-Policy
Optimization (PPO) [79], that are adopted as standard algorithms due to their simplicity
and ease in setup.

In this work, we select A3C as a base algorithm, driven by a Convolutional Neural Net-
work with an LSTM to produce value and policy estimates. Our decision is supported on
the account that we do not seek nor do we focus on state-of-the-art performance. Rather,
our goal with the work in this chapter is to study the benefits of a Teacher/Student
learning framework. As a result, we focus on learning algorithms which are stable and
well-configured to operate on limited computational resources. Furthermore, the A3C
approach conforms with the current implementation from the Bank, and we intend to
present readily applicable results.

The last topic to address for background is an overview of Transfer Learning.
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2.1.4 Transfer Learning

Transfer Learning is the task of training an agent to perform in a target environment
by leveraging the experiences accumulated in a different environment. Similar to Deep
Learning, Transfer Learning applies to a larger class of Machine Learning objectives, how-
ever within the context of this work, Transfer Learning will be viewed directly within the
scope of Reinforcement Learning. Among the many sub-classifications, Transfer Learning
can be approached from three perspectives: Zero-shot Learning, Continual Learning and
Curriculum Learning [28].

In Zero-shot Learning, an agent attempts to learn generalizations between the policies
learned from different environments. The general approach is to have an agent learn sub-
tasks along with the corresponding dependencies to those subtasks. As shown in [83], a
Neural Subtask Graph can be constructed to encode dependencies between subtasks and
their propagated effects on the reward signal of a more complex task. The primary take-
away from [83] is that Transfer Learning can be approached from a structural perspective,
which is a theme that will inform the models we develop.

One of the central applications to Zero-shot Learning comes from the crucial and nec-
essary adaptation between simulated and real-world environments. Deep Reinforcement
Learning often can only be conducted under simplified or simulated conditions; however,
this may not be conducive to real-world systems which are inherently more complicated.
Navigating the difficulties between simulations and real-world systems using Zero-shot
Learning is studied in [32] and [94], and becomes relevant to section 4.2 where a sim-
ulated environment is used to train a Deep Reinforcement Learning model for Order
Execution. To this extent, we subsequently revisit the notion of Zero-shot Learning when
we discuss the design of the training environments conducive for Order Execution.

The Continual Learning of an agent refers to the agent’s ability to learn new tasks
whilst preserving judgement and decisioning on previously collected experience. Con-
tinual learning attempts to design “life-long learners” which embody the concept that
enriched learning is cumulative. The task of continual learning is complicated by what’s
known as catastrophic forgetting [65]. A model catastrophically forgets if the updated
weights bring about a departure from the agent achieving optimal decisioning on their
previously learned policy. Advice from [65] indicates that catastrophic forgetting may
be overcome if an agent is exposed to new learning material in a scheme that does not
interfere with existing knowledge. Such sentiments echo in [52]; the findings from which
indicate that catastrophic forgetting can be mitigated by tuning the speed of learning
for the weights which are deemed important to the central task. The adjustment of
the weights is based on an Elastic Weight Consolidation (EWC) and involves modifying
the policy loss function so as to penalize large departures in the updated weights from
that of the previous model. In a sense acting like a regularizer, EWC ensures that the
weights remain similar to the previously learned model whilst still allowing for updates
to facilitate the new task effectively.

21



Curriculum Learning is realized when an agent is trained with input from an advising
source. The goal is to reduce the time it takes the agent to acquire proficiency on a
target task. There are several approaches for Curriculum Learning, including Teaching
on a Budget for Deep Reinforcement Learning from [43], where a Teacher is optimized
to provided advice on a limited basis, for a Student attempting to learn a task. Another
interpretation of transfer advice comes from [87], where a knowledge mapping is passed
from a Teacher to a Student in the form of a support vector regression.

In the work to follow in section 2.2, we cast Continual and Curriculum Learning
models, under which a Teacher model receives the objective to stay alive for as long as
possible within the environment, and the Student model receives the objective to earn
the highest reward possible within the environment. We primarily approach the Transfer
Learning objective structurally, designing two Neural Networks that incorporate Teacher
advice and state observations under different constructs. We also draw on standard
methods in Transfer Learning and initialize our Student models with the pretrained
network weights from the Teacher, as done in [50] and [95].

2.2 Methodology

We begin this section with a brief technical note regarding our computing resources,
followed by an overview of the three Atari 2600 arcade games used for training. For
comparison purposes, a baseline model is introduced that will outline common elements
for the subsequent Teacher/Student models, including the network architecture and the
tuned hyperparameters.

The core objective behind the Teacher/Student framework is to achieve accelerated
learning with the Student agent by processing advice from the Teacher agent. The Teacher
and Student models each receive different objectives, so we first introduce the training
scheme for the Teacher. The model for the Teacher has the same network structure as
the baseline model, but the Teacher is incentivized to stay alive for as long as possible.
We provide a modified reward signal that reinforces the Teacher to learn this survival
objective.

The Student models are trained to the specifications of the original Atari 2600 ar-
cade games. Subsequently, two Student learning models are presented based on different
network structures that facilitate Advice-Driven (AD) decisioning and Advice & State-
Driven (ASD) decisioning with respect to the Teacher. In the case of the ASD model,
the network structure allows for the weights to be preinitialized based on the trained
parameters from the Teacher.

We conclude by providing a remark on what performance metrics will be used to
study the effectiveness of the Teacher/Student framework.
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2.2.1 Computing System Configurations

All models in this chapter are trained using a dedicated Virtual Machine instance equipped
with 16 vCPUs, 104GB of memory, a 100GB Standard Persistent Disk, and 4 NVIDIA
Tesla K80 GPUs. Correspondingly the A3C model, with the corresponding utilities, are
forked from a public Github Repository1 [36]. We appreciate that many of the configu-
rations we adopt follow from that provided in this repository. We express our gratitude
to the author for publishing the code as open-source material.

2.2.2 The Atari 2600 Environment

Emulators for classic Atari 2600 arcade games are commonly used as benchmark training
environments for which Deep Reinforcement Learning models can be studied, tuned and
enhanced [56]. The emulators for the Atari 2600 environments are provided by OpenAI’s
Gym [16], and are well suited for the upcoming Teacher/Student learning models. Shown
below in Figure 2.2.1 are screenshots of the initialized, and preprocessed, states for the
Atari 2600 arcade games covered.

(a) Breakout. (b) Beamrider. (c) Space Invaders.

(d) Processed Breakout. (e) Processed Beamrider. (f) Processed Space Invaders.

Figure 2.2.1: Screenshots of three Atari 2600 arcade games.

1The repository originates from https://github.com/dgriff777/rl_a3c_pytorch
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The action space for each Atari 2600 environment is discrete and corresponds to the
degree of freedom for the game. To this effect, there are four actions available in Breakout,
nine in Beamrider and six in Space Invaders.

For each Atari 2600 environment, an observation of the state space is an RGB im-
age of dimension (210, 160, 3). To reduce computational overhead, the observations are
preprocessed by condensing the image to the average pixel-value, down-sampling the
pixel-density by a factor of 255, and then finally casting the dimension to be (1, 1, 80). In
addition to reducing the complexity of the input, image-preprocessing carries the benefit
of focusing the observation-space to the features which are most important to facilitate
task-learning. Preprocessing has also become a commonly adopted practice with the fea-
ture engineering for convolutional networks [82], which the one we will now introduce
derives from.

2.2.3 Baseline Model

We introduce a baseline model for the purpose of establishing benchmark performance
results which can be compared to the performance of the Teacher/Student learners. The
baseline model will also come to define the network structure that the Teacher model
inherits. Presented below in Figure 2.2.2 is the network.

1
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32
conv1 5x5 + ReLU

+ MP 2x2

1
...

32
conv2 5x5 + ReLU

+ MP 2x2

1
...

64
conv3 4x4 + ReLU

+ MP 2x2

1
...

64
conv4 3x3 + ReLU

+ MP 2x2
10
24

reshape

51
2

lstm hx

6

linear
actor

1

linear
critic

Figure 2.2.2: The baseline model used for Space Invaders, from [36].

Remark 2.2.1 Each component in Figure 2.2.2 is interpreted as the resulting tensor
after passing through the labelled portion of the network. For example, the first thirty-two
dimensional structure is the output result after a two dimensional convolutional layer –
with a (5× 5) kernel, receiving ReLU activation and a (2× 2) max-pooling – is applied to
the input image. All convolutional layers are given a padding of one, with the exception
of the first convolutional layer, which receives a padding of two.
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Table 2.2.1: Common hyperparameter configurations.

A3C Parameters
Discount Factor γ 0.99
GAE Factor λ 1.00
Number of Steps 20
Number of Processes 16

Environment Parameters
Maximum Episode Length 10,000
Frameskip Rate 4

Optimization Parameters
Learning Rate α 10−4

Optimizer Adam
Shared Optimizer True
Amsgrad True

With the processed-state observation as an input, the network for the baseline model
is characterized by four sequential convolutional layers followed by an LSTM cell that
outputs approximations for the agent’s policy and value function respectively. Note
that Figure 2.2.2 presents the baseline model as it applies to Space Invaders – the only
modification made for Breakout and Beamrider is with the input image and the dimension
of the Actor ’s output, matching that of the cardinality for the respective action space.

The A3C algorithm (Algorithm 2) is adapted to train the network, where the ad-
vantage function is estimated using GAE. The remaining hyperparameters are shown in
Table 2.2.1, and are kept constant throughout the training of all models. The tuning of
these hyperparameters is done minimally, forming the basis for one of the suggestions for
future work presented in section 2.4. However, a discount factor γ being close to one is
justified on the account of keeping the models “far-sighted”.

Having understood the baseline model, the training scheme for the Teacher model is
now introduced.

2.2.4 Teacher Training Scheme

The Teacher model inherits the same network structure as the baseline model. Where
the training scheme differs is in the objective assigned to the Teacher. Formally, the
Teacher is trained to learn a policy which ensures that she continually interacts with her
environment and survives for as long as possible.

We modify the reward signal to encourage the Teacher to learn a survival strategy.
Presently, the following reward signal is crafted and an intuitive justification is provided
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thereafter. The reward signal that reinforces the Teacher is taken as

r(t) = tη

tmax

(
1 + 1{done∧cleared}

)
− κ1{done∧¬cleared} (2.2.1)

Where t is the episode length, tmax is the maximum episode length taken as 10,000 as
per Table 2.2.1, and parameters η, κ are interpreted respectively as the survival bonus
and the hit penalty. The two indicator functions are drawn from the binary events done
and cleared. The event done is true whenever the environment is reset, which may
be triggered when the agent fails her task or successfully clears a stage; to distinguish
between the possible cases, cleared being true indicates that the agent was successful in
reaching a terminal state. The distinction is really only important for Space Invaders and
Beamrider, since both games naturally continue in a reset state if the agent clears all the
enemies on the screen, and is otherwise a subtle technicality. For the implementation to
follow, we took η = 1/2 and κ = 1; extensions of this reward signal may choose different,
and perhaps non-constant, values for these parameters.

The reward signal is similar to, and indeed inspired by, the unit-reward signal from
the classic control game “CartPole”2. In Cartpole, an agent is tasked with balancing
an upright pole on a moving cart, and is scored only on the duration over which the
agent can keep the pole upright whilst the cart moves. CartPole is a very simple game
in terms of the action and state spaces, and for this reason a unit-reward signal is an
appropriate measure to motivate the agent to survive for as long as possible. However,
for comparatively more complicated environments, such as the three Atari 2600 arcade
games attempted in this work, a stronger correlation between reinforcement and action
is required. Specifically, Equation 2.2.1 is crafted to increase when the Teacher learns to
survive for longer periods of time. Empirical tests of the unit-reward signal, specifically
in reference to Figure 2.4.1, demonstrate a significantly reduced rate of learning. We
interpret this as indication that the unit-reward signal offers too weak of a correlation
between action and reinforcement; from “over-encouraging” the Teacher, she becomes
unable to draw inference and meaningful interpretation from the actions taken.

We demonstrate that the Teacher can learn a survival objective by making the reward
signal an increasing function of the episode length. The primary performance metric to
evaluate the success of the Teacher model is the average episode length over a training
session. The reasonable expectation is that a proficient Teacher should realize an average
episode length that approaches the maximum episode length of 10, 000. This indeed is the
case for the Teacher models trained on Breakout and Beamrider; however, the Teacher
trying to survive in Space Invaders did not achieve such a feat. We recognize that this
suggests deficiency in the crafted reward signal, and in section 2.4 we call for future
development.

2https://gym.openai.com/envs/CartPole-v0/
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2.2.5 Student Training Scheme

By introducing the Student models, the following concepts borrow from topics in Transfer
Learning as discussed in subsection 2.1.4. The first model is a curriculum-learning agent
that is fed advice directly from the Teacher agent, and receives no other form of obser-
vation on the state. Such a learning approach is henceforth referred to as Advice-Driven
(AD) decisioning. The second model facilitates an advice stream from the Teacher in ad-
dition to a state observation; the result is the Advice & State-Driven (ASD) decisioning
process.

The Student models are trained on the original Atari 2600 arcade games, and otherwise
receive no modifications thereof. The training is then consistent with that of the baseline
model, allowing for direct comparisons to drawn. Naturally, this also involves keeping
the hyperparameters configured identically as per Table 2.2.1.

2.2.5.1 Advice-Driven Decisioning

The model for the AD learner is given in Figure 2.2.3. The input corresponds to advice
from the Teacher, and is sourced by “detaching” the output state of the Teacher’s LSTM
cell. In this sense, the Student model receives advice based on the collective experiences
of the Teacher. The Student preserves an ability to learn a policy on the environment
she is exposed to by generalizing the advice received from the Teacher.
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actor
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Figure 2.2.3: The Advice-Driven model structure.

Intuitively, an AD model is expected to perform well when the Teacher’s task is
similar to the Student’s objective. Since the AD model does not directly process a state
observation, decisions rely on a second-hand connection to the environment and may
suffer from poor generalization if the Teacher is suboptimally trained.

To introduce a first-hand connection to the environment is to add an observation
stream. Accordingly, we introduce the next learning model which does just that.
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2.2.5.2 Advice & State-Driven Decisioning
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Figure 2.2.4: Advice & State-Driven model structure.

Figure 2.2.4 presents the network for the ASD learner. The model consists of an advice
stream, identical to that of the AD learner, and an observation stream, similar to that of
the baseline model with an added dense layer. The structure of the ASD network allows
for the parameters in the observation stream to be initialized with corresponding weights
from the Teacher’s network. We refer to this practice as prescribing preinitialized weights
(PIW). Under such scheme, the ASD learner would begin making informed decisions
under the Teacher’s directive and gradually shift her actions towards an optimal policy
under the differing task.

We hypothesize that the ASD learner would better consume advice from the Teacher
given the inclusion of the observation stream, ultimately contributing to an accelerated
learning process.

2.2.5.3 Performance Measurement

We set the stage for section 2.3 by providing an overview of the performance metrics
which will be used to interpret the output of the models. For the Teacher models, the
main performance metric is the average episode length, which would indicate the extent
to which the Teacher learned her survival objective.

The Student models are trained under their respective original Atari 2600 arcade envi-
ronment, so naturally, we adopt the average episode reward as an evaluative performance
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metric. To verify expectations that a Teacher/Student framework accelerates training,
we will pay attention to the episode count in regards to the Student’s learning curves.
It will also be insightful to study the average episode length for the Student learning
models, to indicate how influential the Teacher’s advice was for the Student.

2.3 Main Results

We introduce the results by first presenting the performance of the baseline models. Then
the performance of the Teacher models are reviewed, subsequently followed by an analysis
of the Student models.

2.3.1 Baseline Performance

We present the results for the baseline models here, which will be referenced in the
commentary for the performance review of the Student models.

Breakout

Figure 2.3.1: The performance of the baseline model for Breakout.
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Figure 2.3.1 gives the learning curve for the baseline model on Breakout. In total, the
training took three hours and 304 episodes were covered. Given the realized high-score
towards the end of the session, it appears that the baseline model would continue to
benefit from further training. In this light, we appeal to the following remark to make
concrete our comparison approaches.

Remark 2.3.1 Due to efforts to preserve computational resources on the virtual ma-
chine, we adhered to a strict training schedule. We do not anticipate this will cause any
issues when we later compare the performance of the baseline models to the Student mod-
els, since ultimately we are attempting to demonstrate accelerated learning in the Student
models. To account for the training horizon of the baseline models, we train the Student
models under a similar session duration.

Figure 2.3.2 gives the learning curve for the baseline model on Beamrider. The
training also took three hours, spanning 278 episodes. Here, we observe a consistent and
steady learning progression, with a slight levelling-off towards the end of the training
session.

Beamrider

Figure 2.3.2: The performance of the baseline model for Beamrider.
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Finally, Figure 2.3.3 shows how the baseline model for Space Invaders fared. We
afforded a long training session lasting sixteen hours, elapsing 2256 episodes.

Space Invaders

Figure 2.3.3: The performance of the baseline model for Space Invaders.

The long training session was apparently justified in the context of Space Invaders,
since the baseline model drastically improved episode scores right at the end of the session.
Which is to confirm preconceived notions that Space Invaders will be the most challenging
learning environment. Accordingly, as we present results for the Teacher and Student
models, we will afford more computational resources for Space Invaders, to reflect the
findings from Figure 2.3.3.

Progressing forward to review the performances of the Teacher models.

2.3.2 Teacher Performance

Figure 2.3.4 gives the learning curve for the Teacher trained for survival on Breakout.
The training spent 650 episodes over a three hour period, at which point, the Teacher
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was consistently surviving to the maximum episode length. This is not surprising, as
Breakout is the simplest environment of the three Atari 2600 arcade games. Additionally,
the survival objective is nearly identical to the task in the original game, suggesting that
the Teacher model should be as proficient as the baseline model. We also take this as a
sign that the Teacher model should provide valuable advice to the Student.

Breakout

Figure 2.3.4: The performance of the Teacher model for Breakout. Data is plotted at every
second training episode.

Figure 2.3.5 compares the action distributions of the Teacher and the baseline model.
As expected, the actions of the Teacher very closely follow that of the baseline model and
there is very little to distinguish the policies by. As we consider the more complicated
environments of Beamrider and Space Invaders, we will begin to notice a clear depature
in the policies of the baseline model and the Teacher.
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Figure 2.3.5: A comparative view of the action distributions between the baseline and Teacher
models for Breakout. Data is displayed over the last fifty training episodes for each model.

Figure 2.3.6 presents the Teacher’s learning curve for Beamrider. Training was per-
formed for nine hours, which progressed through 940 episodes.

The tradeoff between exploration and exploitation is on clear display in Figure 2.3.6.
The Teacher very early in her training obtained maximum performance by adopting a
primarily defensive strategy. After initial success, there was a very clear drop in perfor-
mance when the Teacher further explored her action space and began learning an offensive
strategy. Of the three Atari 2600 games covered, Beamrider has the largest action space
consisting of nine discrete actions. On account of experiencing the entirety of the action
space, there are several periods when the performance of the Teacher drastically falls-off.
The results indicate that the survival objective for Beamrider can be attained through
different strategies, although the policy that the Teacher eventually settles on is one that
is a mixture between an offensive and defensive strategy. Such a strategy is what we might
expect from the baseline model, so we consult Figure 2.3.7 for further investigation.
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Beamrider

Figure 2.3.6: The performance of the Teacher model for Beamrider. Data is plotted at every
second training episode.

In Figure 2.3.7, the policy decisions of the Teacher are noticeably less consistent.
Whereas the baseline model captures a fairly steady split between an offensive and de-
fensive strategy, the Teacher model tends more towards a single extreme.

Both Teacher models trained on Breakout and Beamrider were able to clearly demon-
strate a policy that survives in their respective environment. The same result was not
secured for Space Invaders, where at no point during the training session did the Teacher
even come within fifty percent of the maximum target.
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Figure 2.3.7: A comparative view of the action distributions between the baseline and Teacher
models for Beamrider. Data is displayed over the last fifty training episodes for each model.

Finally, Figure 2.3.8 provides the learning curve for the Teacher trained on Space
Invaders. The training took significantly longer; nineteen and-a-half hours elapsed in
total, to cover 4100 episodes.

The action space for Space Invaders is less comprehensive than that for Beamrider,
so the reduced performance cannot directly be attributed to the dimensionality of the
action space. What’s more, there is nothing that stands out from the action distributions
that would suggest a failure of the Teacher in learning her objective. Rather, we suggest
that the shortcomings of the Teacher trained on Space Invaders can be attributed to the
nature of the game.

One possible explanation comes from the fact that Space Invaders, like Beamrider,
is played over a series of stages. The difference is in the initialization of each stage: in
Space Invaders, the enemies are reset to their starting positions whereas in Beamrider,
the environment is cleared altogether. Such an initialization for the environment may
pose a challenge for the Teacher drawing inference from observations on Space Invaders,
resulting from a weak correlation between the reward signal and the presentation of
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the state. While ultimately we do not expect this to prevent learning entirely, it remains
plausible that a more complicated state environment for Space Invaders slows the learning
of the Teacher.

Space Invaders

Figure 2.3.8: The performance of the Teacher model for Space Invaders. Data is plotted at
every second training episode.

Figure 2.3.9 compares the actions of the Teacher and the baseline model for Space
Invaders. As with Beamrider, the policy for the Teacher more often favours a certain
action-type, whereas the baseline model better captures a balance across each episode.

To recap, we have seen how the reward signal crafted in section 2.2 can motivate
a Teacher to learn an objective. The Teacher is trained successfully for Breakout and
Beamrider, and modestly for Space Invaders. As attention now shifts towards the per-
formance of the Student, we comment that the proficiency of the Teacher is expected to
directly impact the quality of the Student’s learning ability.

36



Figure 2.3.9: A comparative view of the action distributions between the baseline and Teacher
models for Space Invaders. Data is displayed over the last fifty training episodes for each model.

2.3.3 Student Performance

In this section, we present the learning curves for each Student model discussed in sec-
tion 2.2. Where appropriate, we designate whether any preinitialized weights (PIW)
have been prescribed to the Student from the Teacher. Performance summaries include
a view of both the average episode reward and the average episode length, facilitating
commentary as to the influence of the Teacher.

Beginning our analysis with Breakout. Figure 2.3.10 demonstrates that every Student
model learned how to play Breakout faster than the baseline model. Given the simplicity
of the game, and the proficiency of the Teacher, the results agree with our expectations.

The best performing Student model was the ASD learner with PIW, which con-
verged after only 80 episodes to an average reward that exceeded what the baseline
model achieved after 304 episodes (in reference to Figure 2.3.1). For further comparison,
we include the learning curve for the, slightly-modified, baseline model when given PIW.
The modification is done simply by adding a linear fully-connected layer after the LSTM
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cell. The fact that the ASD model outperforms the baseline model when both are given
PIW provides lift to the claim that the Teacher/Student framework can demonstrate
accelerated learning.

Breakout

(a) Breakout’s Average Episode Reward. (b) Breakout’s Average Episode Length.

Figure 2.3.10: A comparative performance summary for the Student models on Breakout.

Notable is that the AD model outperformed the ASD model when neither were given
PIW. While the ASD learner is better equipped for enriched learning of her task, the
environment is just too simple in Breakout for this knowledge to culminate in accelerated
learning. Indeed, sometimes learning happens quickest when directly being informed of
the answer.

Plot (b) in Figure 2.3.10 shows that the Student models quickly adopted a survival-
centric strategy. Given the similarities between the survival objective and the reward
maximizing objective within the context of Breakout, plots (a) and (b) speak to the same
conclusion: in view of rapid learning, the Teacher/Student framework was successful for
Breakout.

Progressing forward now to Beamrider. Figure 2.3.11 indicates that once again, the
top performing model was the ASD learner with PIW. Differing from Breakout however,
was the poor performance of the AD learner. Beamrider is a more complicated game
than Breakout, whereby the survival objective from the Teacher appears to offer less
relevance to the Student. We are led to conclude that an observation stream is crucial
to the learning progression of the Student in a complicated environment.

The importance of PIW becomes clear, owing to the fact that the baseline model
outperformed the ASD learner when PIW were not given. The interpretation is that
PIW better enables the Student to understand, and act on, the advice coming from the
Teacher. Viewed equivalently, in the absence of PIW, the Student needs to learn how to
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process advice from the Teacher in addition to learning the objectives required to excel
at the task-at-hand. All of the justification is to say that PIW enables the Student to
make enriched generalizations on her observation given the Teacher’s advice.

Beamrider

(a) Beamrider’s Average Episode Reward. (b) Beamrider’s Average Episode Length.

Figure 2.3.11: A comparative performance summary for the Student models on Beamrider.

So far, it is clear that an observation stream with PIW has been the best approach
for the Student in the case of Beamrider. Plot (b) from Figure 2.3.11 provides insight
into why this is the case. The characteristic “dip” in the average episode length observed
for both the baseline model and the ASD model without PIW is a pattern suggestive of
a prolonged exploration phase. With little environmental context, the Student needs to
spend more time gathering experience in order to begin generalizing the advice from the
Teacher and reconciling observations from her state. On the other hand, the models pre-
scribed with PIW are able to begin exploiting domain-specific knowledge sooner. Thus,
PIW accelerates learning by reducing the amount of exploration required.

As previously observed, the Teacher models for Breakout and Beamrider learned to
maximize survival, whereas the Teacher trained on Space Invaders did not manage sur-
vival to such the extent. We see how the suboptimality of the Teacher impacts the quality
of the Student learning to play Space Invaders in Figure 2.3.12. Despite initially showing
improvements over the baseline model, none of the Student learners outperformed at the
end of the training session. The ASD learner with PIW appears to track the learning
progression very closely, following a similar trajectory to the baseline model. The take-
away here is that the success of a Teacher/Student learning framework depends not only
on the relevance of the Teacher’s advice, but also on the level of mastery achieved by the
Teacher.
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Space Invaders

(a) Space Invaders’ Average Episode Reward. (b) Space Invaders’ Average Episode Length.

Figure 2.3.12: A comparative performance summary for the Student models on Space Invaders.

Interestingly, the baseline model performs better than its slightly modified version
which is given PIW. This indicates that PIW prescription is not trivial for Transfer
Learning models, and still relies on an adequate generalization process, for which the
ASD learning model appears to demonstrate.

The results for the Student models are presented immediately below in Table 2.3.1;
neatly shifting discussion towards future considerations.

Table 2.3.1: Summary of the performances of the Student learning models.

Breakout Beamrider Space Invaders

Number of
Episodes (A)

Average
Reward

Average
Reward after
min(A)

Number of
Episodes (B)

Average
Reward

Average
Reward after
min(B)

Number of
Episodes (C)

Average
Reward

Average
Reward after
min(C)

I Baseline Model 304 202 18 278 6793 4418 2256 2525 1258
I Baseline with PIW 95 344 339 220 6103 5470 1701 1123 1042
I AD Model 107 338 310 264 1090 906 1572 628 628
I ASD Model 80 252 252 216 6326 3966 2215 732 662
I ASD Model with PIW 80 350 350 185 6591 6591 1806 1363 1192

2.4 Future Work

Through our analysis, we have demonstrated how a Teacher/Student learning framework
can lead to accelerated learning. Our coverage has provided insight into the practical
training schemes for both the Teacher and Student models.

In the case of the Teacher, we demonstrated how a crafted reward signal can be used to
train a Deep Reinforcement Learning agent to learn a generalized task. The approaches
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were successful in two of the three applications. Such work is extendable outside the
context of a Teacher/Student learning framework and offers relevance when designing a
Deep Reinforcement Learning application from scratch.

From the perspective of the Student, we have shown two learning models that derive
advice from a Teacher, extend decisioning to state observations and handle preinitialized
weights. The success of the Student models, as measured by an accelerated rate of
learning when compared to a baseline model, was achieved under different conditions
in light of the environmental complexity, the relevance of the Teacher’s advice, and the
extent of the Teacher’s own mastery of her advice.

Based on the results presented, we suggest two areas for further work.

INext-step 1: The hyperparameters were tuned to the specifications from [36]. De-
spite noting strong performance with the baseline models, future work might materialize
from the tuning of hyperparameters to match the specifics of each environment.

I Next-step 2: The Teacher trained under Equation 2.2.1 for Space Invaders did
not achieve mastery in her survival, which impacted the ability of the ASD learner to best
the baseline model in learning speed. Next-step considerations should focus on training
the Teacher model to a level of mastery on Space Invaders. This would demonstrate
the flexibility of reward signal engineering and can then be used to further validate the
performance of the Student learning models.

Equation 2.2.1 was inspired by the unit-reward signal, as mentioned in section 2.2.
In Figure 2.4.1, we show the learning curve for the Teacher trained under the unit-
reward signal on Space Invaders. What becomes apparent is a quickly-realized entropy
breakdown, where the Teacher settles into a suboptimal policy with little variability in
her actions. This is perhaps a shortcoming specific to an n step ahead method, since any
action performed by the agent along a given trajectory is rewarded the same.

While clearly the unit-reward signal “over-encourages” the Teacher, even Equation 2.2.1
seems to suffer from the poor-attribution and timing of reinforcement signalled to the
Teacher. A proficient reward signal must therefore be one that offers a direct link between
positive reinforcement and desired behaviour, as the causality of the linkage directly im-
pacts learning progression.
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Figure 2.4.1: The performance of the Teacher model for Space Invaders trained under the
unit-reward signal. Data is plotted at every second training episode.
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Chapter 3

A Transient Price Impact Model for
Order Execution

In this chapter, we study a models-driven approach to Order Execution. The model we
introduce couples the dynamics for the bid- and ask-price processes, and is similar to
that studied in [59]. Where our model differs from [59] is in the reversion of the bid- and
ask-price processes to a fundamental, unaffected price process. Under the transient price
impact model, we derive the trader’s liquidation wealth and formulate the mean-variation
maximization for an agent carrying constant absolute risk-aversion. In characterizing
optimality, we are able to avoid a typical Hamilton-Jacobi-Bellman type equation and
instead, show that the discretized model can be solved as a Quadratic Program. To
the tune of [59], a supporting variational analysis is given to justify the discretization
approach and formulate a continuous-time representation. The results admit insight into
economic factors such as market depth, resilience, tightness and bias.

The roadmap for this chapter is as follows:

In section 3.1, we motivate the study of Order Execution by introducing the Limit
Order Book and reviewing applications that will be relevant to our model.

In section 3.2, we introduce the transient price impact model and formulate the opti-
mization objective.

In section 3.3, we begin by discretizing the objective and solving the resulting opti-
mization problem as a Quadratic Program. Under certain market conditions, a closed-
form solution can be derived. We make strides towards a continuous-time representation
by evaluating the limit of the previously-found closed-form solution and show an agree-
ment to [4]. In proceeding with further continuous-time analysis, we adopt a variational
approach to confirm the results found for the analytical solution.

In section 3.4, we discuss extensions to the transient price impact model which in-
cludes trading multiple assets and competing against adversarial agents. The chapter is
concluded on a note motivating the upcoming application of Deep Reinforcement Learn-
ing to Order Execution.
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3.1 Background

3.1.1 The Limit Order Book

Securities trading has evolved significantly since the period of “Open-Outcry”, where trad-
ing once took place through verbal and physical cues. This comes in staggering contrast
to modern trading, which now occurs significantly over electronic markets. Electronic
trading has its origins traced back to 1969, when the brokerage firm Instinet first offered
a Direct Market Access (DMA) service to clients [67]. In the years since, Electronic Com-
munication Networks (ECNs) became adopted by stock exchanges on a widespread basis
and eventually, securities markets became digital. The Toronto Stock Exchange owns
the claim of being the “first exchange in the world to computerize stock market trading”
when the exchange became fully electronic in 19971.

Traders interact with electronic markets by posting limit orders to express the price
and volume that they intend to trade at. A matching engine executes trades when
the price of a bidding order, that coming from a buyer, crosses the price given by an
offering/asking order, that coming from a seller. In a general sense, the execution of
a trade is not guaranteed and naturally depends on the target-price of the posted limit
order. When such a target-price is disregarded completely – indicating a trader’s intention
to immediately fill an order – then a market order is posted and is matched with the best
bid or offer (BBO) price that is prevailing in the market. The Centralized Limit Order
Book consolidates all such outstanding limit orders and, in the case that we will study,
discloses this information to market participants.

The limit order book plays host to a competitive and fast-paced world of trading,
where spreads between the best bids and offers are usually kept tight, leading to lower
transaction costs and enhanced liquidity [7]. A hypothetical limit order book is presented
in Figure 3.1.1, which shows a market order “walking through” the limit order book.
As it pertains to real data, a comprehensive empirical study of limit order books from
exchanges in London, Paris, New York and Spain is given in [14].

Trading on a limit order book provides a glimpse into the complicated dynamics that
drive the price of securities; the information content from the limit order book plays a
role in the price discovery mechanism [17]. As a result, modelling the limit order book
becomes central to the study of Market Microstructure [89]. There are many approaches
to study the price dynamics in a limit order book, for instance, [48] constructs a Markov
model by treating the arrival of limit orders as independent Poisson processes, each
with a price that is informed from independent and identically distributed variables of

1https://www.tsx.com/trading
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(a) The initial state of the limit order book.
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(b) An active order depleting volume at the BBO.
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(c) The new state of the limit order book.

Figure 3.1.1: A hypothetical limit order book with price evolution.

some density. Similarly, [73] works with a Markovian equilibrium model that arises when
traders are permitted to cancel their limit orders. Outside of models with a Markov based-
assumption, stochastic differential equations can be adapted to model quote-density [21]
and various other diffusion models for prices. We appeal to [1] for a comprehensive
overview of limit order book modelling.

In our approach, we will consider an extension of the block shaped limit order book
from [4]. This decision is supported on account of simplicity and the intuitive capture
of the underlying transient price dynamics. Under the block shaped limit order book,
quote-density is uniformly distributed beyond the BBO and linear price impacts arise
due to market orders. Furthermore, the bid- and ask-prices recover to a fundamental
price process – one that is not impacted by trading volumes – at an exponential rate.
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The block shaped limit order book has prompted several extensions, including that under
generalized densities or “shapes” as in [69]. The block shaped limit order book has also
been studied under high-resiliency limits in [47], showing a resemblance in the context of
Order Execution to the seminal findings from [72], making the block shaped limit order
book particularly appealing. The transient price impact model that we study is inspired
by [59], which considers a two-sided block shaped limit order and defines a coupled system
for the bid- and ask-price processes.

The limit order book is an entry point for many applications that hinge on price
dynamics. We will now briefly review the application central to our work, that is Optimal
Order Execution, but we acknowledge a more detailed investigation from [34].

3.1.2 Optimal Order Execution

A trader who is tasked with executing a large order must decide how, if at all, the quantity
should be split over smaller trades. From Figure 3.1.1, it becomes clear that executing
trades in large block-sizes leads to unfavourable execution prices and detrimental price
impacts. However, if the trader posts limit orders that are too far from the BBO, then
execution becomes unlikely. The tradeoff that these considerations pose is one between
price impacts and price uncertainties [45]. The risk coming from price impact culminates
in transactions costs when trading is executed too quickly, or in too large allotments,
effectively stripping the market of liquidity and stipulating a penalty under the laws of
supply and demand. In contrast, price uncertainty risk is detrimental for strategies which
trade too slowly and expose the trader to uncertain market conditions. In dealing with
the risk tradeoff, the consensus opinion is that a large order should be executed as several
smaller ones [10][31]. The subject of Optimal Order Execution answers just how many
trades should be executed and just how small these trades ought to be so as to maximize
trading profits.

The first academic contribution to the study of Optimal Order Execution came from
[12], where optimal trading policies were viewed as ones that minimize expected trans-
action costs. Execution prices were modelled as functions of the prevailing market price
offset by a linear impact induced from the agent’s trading quantities. Under the simplified
approach, [12] demonstrated that a discrete share liquidation schedule can be formulated
to realize an optimal execution strategy. The approach however, did not account for po-
tential price fluctuations and as a result, served limited practical applications. Addressing
this shortcoming, the seminal work of the “Almgren and Chriss model” [72] allowed for
prices to be modelled as a Brownian Motion, and considered portfolio optimization from
the view of minimizing the transaction costs which arise from both permanent and tem-
porary market impacts. The Almgren and Chriss model advance linear cost functions and
present the equivalent of an efficient frontier to characterize the class of optimal trading
policies. Several direct extensions of the Almgren and Chriss model are discussed in [37].
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The Almgren and Chriss model has had a profound influence on how transaction
costs treated in the applications of Order Execution and related variants thereof. The
work from [13] considers equilibrium returns in view of a quadratic cost premium; [30]
studies perfect hedging under permanent market impacts; and [29] specifically reviews a
conservative delta hedging strategy with transaction costs.

It is common for Optimal Order Execution problems to borrow from advanced tech-
niques in Stochastic Control. This will not be the focus for our present modelling. Rather,
we will show how a transient price impact model, one that imparts quadratic transac-
tion costs, can be modelled as a Quadratic Program. The simple approach is perhaps
the most significant contribution of our efforts, but suffers from interpretability limita-
tions. To address these limitations, we will make strides towards adopting a variational
argument similar to that presented in [59], which our model is well suited for.

3.2 Methodology

In this section, we propose a price impact model and formulate the resulting optimal
liquidation problem. Subsequent analysis will follow in a continuous time setting leading
to the eventual discretization.

3.2.1 Transient Price Dynamics

The setup begins by considering a trader who is tasked with liquidating shares of an asset
over a fixed time horizon. Allow γt to represent the trader’s inventory at time t, which is
modelled

γt = γ0− + γ+
t − γ−t

Where γ0− gives the inventory of shares prior to trading and γ±t provides the quantity
of shares purchased (+) or sold (−). The purchasing and selling processes are taken as
non-decreasing cádlág functions, which allows the inventory representation to capture
both continuous trading and block/impulse trading. As an item of notation, γ±t− denotes
the left limit of γ±t and the magnitude of any block/impulse trade is given by ∆γ±t =
γ±t − γ±t− . Also, we impose the constraint that after executing all trades by time τ , the
trader has no remaining shares γτ = 0. Finally, the trader commits to her trading policy
at the beginning and does not modify the schedule intertemporally, which means that γt
is deterministic.

The characterization of γt may be summarized by the set of admissible trading policies

Γ =
{

(γt = γ0− + γ+
t − γ−t )0≤t≤τ : γ±t non-decreasing cádlág,

γ±0− = 0, γτ = 0
}
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The fundamental price (P )t≥0 of the asset is the unperturbed price, that which is real-
ized in the absence of market activity. We take (P )t≥0 as an arithmetic Brownian Motion
with constant exogenously determined coefficients µ, σ and fix a filtered probability space
(Ω,F ,P) satisfying all the conditions it ought to.

Now, introducing the price model, which takes the asset’s bid- and ask-price as

dAt = dPt + λdγ+
t − α(At − Pt)dt

dBt = dPt − λdγ−t − α(Bt − Pt)dt
(3.2.1)

With positive constants λ and α. The dynamics of the resulting limit order book closely
follows the form introduced by [4], under which purchases appreciate the best available
ask-price and sales erode the best available bid-price. The magnitude of the price impacts
depend on the depth of the limit order book as specified by λ. To capture transience,
the bid- and ask-prices revert to Pt at a resiliency rate α. A simple representation of the
dynamics captured by Equation 3.2.1 is presented in Figure 3.2.1 below.

time

price

1 2 3 4 5

B0−

P0−

A0−

Figure 3.2.1: An example of the limit order book, as stipulated by Equation 3.2.1, reacting to
a sell-order at t = 2.

As previously mentioned, Equation 3.2.1 is similar to the model considered in [59]
which couples the bid- and ask-price processes through reversion to one-another. We
suggest that reversion to Pt preserves the intuition behind the unperturbed price and
better facilitates the dynamics of the asset’s mid-quote Qt = (At + Bt)/2. With the
bid-ask spread St = At −Bt, Equation 3.2.1 gives rise to dynamics for Qt and St

dQt = dPt + 1
2λdγt − α(Qt − Pt)dt (3.2.2)

dSt = λ|dγ|t − αStdt (3.2.3)
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When taking for notation |dγ|t = dγ+
t + dγ−t . It will be convenient to define a spread

measuring the mid-quote bias Rt = 2(Qt − Pt), and under such, Equation 3.2.2 and
Equation 3.2.3 are solved

Rt = R0−e
−αt + λ

∫
[0,t]

e−α(t−u)dγu (3.2.4)

St = S0−e
−αt + λ

∫
[0,t]

e−α(t−u)|dγ|u (3.2.5)

A natural assumption on the initial conditions is that |R0− | ≤ S0− , equivalent to imposing
B0− ≤ P0− ≤ A0− .

3.2.2 Formulating the Optimization Problem

Now we address the trader’s wealth process when executing an admissible policy. Under
Equation 3.2.1, transaction costs are levied in proportion to the square of the block size
of the trade. To see this, consider the wealth gained by the trader after selling ∆γ−t
shares of the asset at t ∈ [0, τ ]

wt =
∫ ∆γ−t

0
(Bt− − λx)dx = Bt−∆γ−t −

λ

2 |∆γ
−
t |2

The wealth impact is analogous when the trader purchases, leading to the dynamics for
the trading wealth

dwt =
(
Bt− − λ∆γ−t

)
dγ−t −

(
At− + λ∆γ+

t

)
dγ+

t (3.2.6)

Such a relationship suggests that simultaneously purchasing and selling will always be
suboptimal. It is therefore assumed, without loss of generality, that ∆γ+

t ∆γ−t = 0 for all
t ∈ [0, τ ].

The following proposition provides the liquidation wealth process, consistent with
[77], which will inform our optimization objective.

Proposition 3.2.1 For γ ∈ Γ, the liquidation wealth received at maturity is

Wτ (γ) = P0−γ0− +
∫ τ

0
γt−dPt −

1
2Cτ (γ) (3.2.7)

incurring transaction costs Cτ

Cτ (γ) = R0−
∫

[0,τ ]
e−αtdγt + S0−

∫
[0,τ ]

e−αt|dγ|t

+ λ

 ∫
[0,τ ]

∫
[0,τ ]

e−α|t−s|dγ−s dγ
−
t +

∫
[0,τ ]

∫
[0,τ ]

e−α|t−s|dγ+
s dγ

+
t

 (3.2.8)
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Proof: Integrating Equation 3.2.6 over the trading horizon gives

Wτ (γ) =
∫

[0,τ ]
Bt−dγ

−
t −

∫
[0,τ ]

At−dγ
+
t −

λ

2
∑
t∈[0,τ ]

|∆γt|2

Which may be written in terms of Rt and St.

Wτ (γ) = −
∫

[0,τ ]
Pt−dγt −

1
2

 ∫
[0,τ ]

Rt−dγt +
∫

[0,τ ]
St− |dγ|t + λ

∑
t∈[0,τ ]

|∆γt|2


Integration by parts on
∫

[0,τ ] Pt−dγt recovers the first two terms in Equation 3.2.7. The
terms collected in the square brackets represents the transaction costs Cτ , which may then
be written by substituting in Equation 3.2.4 and Equation 3.2.5

Cτ (γ) = R0−
∫

[0,τ ]
e−αtdγt + S0−

∫
[0,τ ]

e−αt|dγ|t + λ
∑
t∈[0,τ ]

|∆γt|2

+ λ

 ∫
[0,τ ]

∫
[0,t)

e−α(t−s)dγ−s dγ
−
t +

∫
[0,τ ]

∫
[0,t)

e−α(t−s)dγ+
s dγ

+
t


Which is equivalent to Equation 3.2.8 under the respective integrand transformation. �

We assume that the trader carries constant absolute risk-aversion, so the utility func-
tion is exponential with risk-aversion β ≥ 0, u(x) = e−βx. Seeing as the liquidation
wealth is normally distributed, we obtain

E
(
u(Wτ )

)
= exp

(
− βE(Wτ ) + β2

2 Var(Wτ )
)

Solving for the optimal trading policy amounts to maximizing the mean-variance objective
function

Jτ (γ) = P0−γ0− + µ
∫ τ

0
γt−dt−

1
2Cτ (γ)− βσ2

2

∫ τ

0
γ2
t−dt→ max

γ∈Γ
!

We carry this convex cost functional forward as we now address a solution method.

3.3 Main Results

In this section, we discretize the model and solve for the general cases computationally.
We show several examples with varying market conditions and discuss the economic
implications of the transient price impact model. Additionally, we work through a simple
case which permits a closed-form solution under the method of Lagrangian multipliers.
A limit of this closed-form solution shifts attention towards a continuous-time modelling
approach, whereby a variational argument confirms our discrete-time approach.
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3.3.1 Discrete-Time Optimization

Suppose we limit our focus to consider admissible trading policies that only execute at
discrete points in time. It is convenient to evenly-space the time intervals between trades,
in which case the discretization we take is over a grid Ξ = {0, h, 2h, . . . , τ} for h = τ/n.
A practical example is when a trader sells shares every fifteen minutes over single trading
day, thereby executing n = 26 orders.

The set of admissible discrete policies is taken

Γn =
{(
γnih = γ0− +

i∑
j=0

(∆γ+
jh −∆γ−jh)

)
ih∈Ξ

: (∆γ±ih ≥ 0)ih∈Ξ,

γnτ = 0
}

and under discrete trading, the objective function is written

Jτ (γn) = P0−γ0− − µh
n∑
i=0

(∆γ+
jh −∆γ−jh)i−

1
2Cτ (γ

n)− Uτ (γn) (3.3.1)

with transaction costs Cτ

Cτ (γn) =
n∑
i=0

[
(S0− +R0−)∆γ+

ih + (S0− −R0−)∆γ−ih
]
e−αih

+ λ
n∑
i=0

n∑
j=0

e−αh|i−j|(∆γ+
ih∆γ+

jh + ∆γ−ih∆γ−jh)
(3.3.2)

and risk charges Uτ

Uτ (γn) = βσ2h

2

n∑
i=0

[
γ0− +

(i−1)+∑
j=0

(∆γ+
jh −∆γ−jh)

]2
(3.3.3)

Equation 3.3.2 induces two types of costs: the first comes from the initial market
conditions stipulated by S0− and R0− , and the second comes from market impact. Such
costs are linear and quadratic, respectively. Equation 3.3.3 returns a similar breakdown,
and we show this below

Uτ (γn) = βσ2h

2

n∑
i=0

γ2
0− + 2γ0−

(i−1)+∑
j=0

(∆γ+
jh −∆γ−jh) +

 (i−1)+∑
j=0

(∆γ+
jh −∆γ−jh)

2
= βσ2h

2

n∑
i=0

γ2
0− + 2γ0−

(i−1)+∑
j=0

(∆γ+
jh −∆γ−jh) +

(i−1)+∑
j=0

(∆γ+
jh −∆γ−jh)2

+
(i−1)+∑
j=0

(i−1)+∑
k 6=j

(∆γ+
jh −∆γ−jh)(∆γ+

kh −∆γ−kh)


Risk charges therefore arise based on a planning horizon – the trader must weigh her
decision to buy or sell shares at some time t against her decision to do so at every other
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instance in time. When β > 0 the trader is encouraged by risk considerations to liquidate
her inventory more aggressively at the beginning of the trading horizon.

Equation 3.3.1 is quadratic in ∆γ± and remains convex. As a result, we can efficiently
model the solution using numerical software. We adopt the vector notation ∆γ± =[
∆γ±0 · · · ∆γ±τ

]′
∈ Rn+1 and construct the Quadratic Program as follows

maximize
∆γ±

P0−γ0− − µh
n∑
i=0

(∆γ+
jh −∆γ−jh)i−

1
2Cτ (γ

n)− Uτ (γn)

subject to
n∑
i=0

(∆γ−ih −∆γ+
ih) = γ0− ,

∆γ±ih ≥ 0 ∀ ih ∈ Ξ

(3.3.4)

Which is equivalent to the standard-form representation,

minimize
∆γ±

− 1
2

(
∆γ+

∆γ−

)′ (−λM − V V
V −λM − V

)(
∆γ+

∆γ−

)

−
(
−(u+ c)− (S0− +R0−)d
u+ c− (S0− −R0−)d

)′ (
∆γ+

∆γ−

)

subject to
(
−1
1

)′ (
∆γ+

∆γ−

)
= γ0− ,

I

(
∆γ+

∆γ−

)
≥ 0

(3.3.5)

where 1 ∈ Rn+1 is a vector of ones; M ∈ R(n+1)×(n+1) is the matrix

M =


1 m m2 . . . mn

m 1 m . . . mn−1

... ... . . . . . . ...
mn mn−1 mn−2 . . . 1



with m = e−αh; V ∈ R(n+1)×(n+1) is the matrix

V = βσ2h



n n− 1 n− 2 . . . 1 0
n− 1 n− 1 n− 2 . . . 1 0
n− 2 n− 2 n− 2 . . . 1 0

... ... ... . . . ... ...
1 1 1 . . . 1 0
0 0 0 . . . 0 0


u ∈ Rn+1 is the vector

u = γ0−βσ
2h
(
n n− 1 n− 2 . . . 1 0

)′
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c ∈ Rn+1 is the vector

c = µh
(
0 1 2 . . . n− 1 n

)′
and d ∈ Rn+1 is the vector

d = 1
2
(
1 m m2 . . . mn−1 mn

)′
With the Quadratic Program in hand, we proceed to investigate the nature of the

optimal trading policy under different market conditions.

3.3.2 Investigating the General Discrete Solution

In order to investigate the optimal trading policies in discrete-time, we construct a hy-
pothetical market and distinguish exogenous variables between agent-specific parameters
– those being under the agent’s control – and market-specific parameters – those char-
acterizing the nature of the market. The following parameter selections are taken for a
baseline:

Agent-specific : τ = 10; γ0− = 10; β = 1; n = 200
Market-specific : λ = 2; α = 1; µ = 5; σ = 1; S0− = 5; R0− = 1

On an order of magnitude basis, the selection of the parameters are similar to that
studied in [59].

Our approach will be to study how each parameter influences the optimal trading
policy. Given the high-dimensional space, the analysis will be conducted on an “all else
equal” assumption; the limitations of such an approach will directly motivate our efforts
to adopt a continuous-time representation.

Figure 3.3.1 presents the findings when investigating the agent-specific parameters.
We can tell that the agent is responding to a favourable µ estimate since trading is
observed throughout the entire horizon. What’s more, there are clearly periods of time
when the optimal trading policy calls for purchasing, selling and waiting – consistent
with the work from [59]. Several policies in Figure 3.3.1 depict large block trades made
at the beginning and at the end of the trading horizon, suggesting an alignment to [4].
Indeed as we progress towards a closed-form solution, we show that the model we study
preserves these findings.

From plot (a), we depict how the optimal policy is outlined for both liquidation and
acquisition – in the case of the latter, the agent begins trading with γ0− < 0 and looks to
draw up her position to close with γτ = 0. The acquisition trajectories once again reflect
favourable market conditions, where the agent is at times incentivized to acquire more
shares than she intends to finish with, so as to realize the expected price appreciation.
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A similar, and far more aggressive strategy, is noticed in plot (c) when the agent trades
with no risk-considerations, β = 0. The aggression however, quickly fades when the
agent charges greater magnitude to her risk and instead, opts for large block trades at
the beginning to quickly reduce her exposures.

(a) Optimal policies under different γ0− (b) Optimal policies under different τ

(c) Optimal policies under different β tolerances (d) Optimal policies under different n

Figure 3.3.1: Optimal policies when agent-specific parameters are varied.

The main insight from plot (b) points to the idea that the time horizon primarily
impacts the rate of trading. When an agent is able to trade over a longer period of
time, it is advantageous from a market impact perspective to trade in smaller allotments.
Whereas plots (a), (b) and (c) all show policies with fundamentally different approaches,
plot (d) is relatively consistent and mute. We can take this as evidence indicating that a
discrete-time policy converges point-wise towards a continuous-time policy.

Studying different agent-specific parameters reveals how different investors would per-
form in the same market. However, a trader often does not have complete control over
her execution horizon or in the number of shares that she needs to liquidate – Agency
Trading, or trading on behalf of another institution, is an example where a trader is
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constrained in terms of both γ0− and τ . Then, the natural question to pose is how does
the market influence the nature of the optimal trading policy?

To advance discussions, Figure 3.3.2 shows how the optimal trading policy responds
through a range of varying market conditions. When the market is governed by a strict
impact coefficient, then liquidity becomes scarce, and the optimal policies respond by
trading in smaller allotments. The opposite nature is observed when the resiliency rate
is reduced; when the bid- and ask-prices recover to the fundamental price at slower rates,
then optimal trading calls for larger block trades and a slower effective rate of trading.

The initial state of the market, as measured through the spread-tightness and the
mid-quote bias, appear to influence a holding period when conditions are unfavourable
for liquidation. This would correspond to when the bid-ask spread is sufficiently large
or when the fundamental price is sufficiently below the mid-quote. In either case, the
optimal policies begin liquidating when the upfront costs are reduced simply from price
appreciation.

(a) Optimal policies under different λ coefficients (b) Optimal policies under different α rates

(c) Optimal policies under different S0− values (d) Optimal policies under different R0− values

55



(e) Optimal policies under different µ estimates (f) Optimal policies under different σ estimates

Figure 3.3.2: Optimal policies when market-specific parameters are varied.

Further generalizations are difficult to make in this discrete-time setting. Without a
closed-form solution, it is challenging to infer a clear picture as to how each parameter
changes the nature of the optimal trading policy. What remains however, is that the
solution space is richly diverse and, at least at a surface level, offers insights that are
intuitive from an economic perspective. We use this as motivation to carry forward in
approaching a continuous-time representation of this problem.

3.3.3 A Closed-Form Discrete-Time Solution

While Equation 3.3.4 cannot be solved analytically under a general case, with simplifying
assumptions that constitute a simple market, we do have an analytical solution for a risk
neutral agent. The assumptions on the market are given below.

Definition 3.3.1 A simple market is one where

I the fundamental price process is a martingale, so µ = 0;

I there are no initial spreads, S0− = R0− = 0;

Thus, optimal liquidation in a simple market amounts only to cost minimization. It
becomes clear that purchasing should be ruled out entirely when γ0− > 0. This gives,
without loss of generality, ∆γ+ ≡ 0.

Remark 3.3.1 If the agent is looking to optimally acquire shares, this would support the
case whereby γ0− < 0, thus forcing ∆γ− ≡ 0.
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Remark 3.3.2 It is permissible for γ0− = 0 in this simple market setting, in which
optimality clearly demands no trading activity.

The solution under the simple market is presented in the following proposition.

Proposition 3.3.1 For a risk-neutral agent seeking liquidation in the simple market, the
optimal discrete trading policy ∆γ̂− is

∆γ̂− = γ0−

1′M−11M
−11 (3.3.6)

Proof: It may readily be shown that Equation 3.3.6 satisfies the necessary Karush-
Kuhn-Tucker conditions for inequality-constrained optimization objectives. In doing so,
one will observe that the positivity constraints are nonbinding, meaning that γ̂ > 0 for
the optimal solution. Consequently, the unconstrained optimization can be solved using
Lagrangian multipliers on the following

L(∆γ−; l) = 1
2(∆γ−)′M∆γ− − l(1′∆γ− − γ0−)

By construction, the matrix M is indeed invertible, with the inverse given as

M−1 = 1
1−m2



1 −m 0 · · · 0 0 0
−m 1 +m2 −m · · · 0 0 0

... ... ... . . . ... ... ...
0 0 0 . . . −m 1 +m2 −m
0 0 0 · · · 0 −m 1


So completing the normal routine returns ∆γ̂− as per Equation 3.3.6. �

From this, we can tell that the market impact plays no role at all in the optimal
solution under a simple market. The only market-specific parameter that influences
the optimal trading decision is the market resilience rate. Suggesting then that cost
minimization calls directly for the timing of trades to match the rate at which the market
recovers from any dislocation.

We then can view the plots in Figure 3.3.3 and notice that the optimal policies all
appear to linear, which would suggest an alignment to [4]. This is understandable since
the market setup, that with simplifying assumptions, is identical. We use this observation
to bring us towards a continuous-time representation.
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(a) Simple optimal policies under different γ0− (b) Simple optimal policies under different τ

(c) Simple optimal policies under different α rates

Figure 3.3.3: Optimal policies in a simple market when varying agent-specific parameters

3.3.4 Towards a Continuous-Time Representation

We saw in Figure 3.3.1 that the optimal trading policy appears to quickly converge point-
wise when the number of discrete trades gets large. We also noticed that the closed-form
analytical solution for the discrete model demonstrates identical characteristics to that
from [4]. It is very natural then to consider a limiting case for n→∞ and by doing so,
we confirm that our results for the simple discrete model do in fact match with [4].

Proposition 3.3.2 The continuous-time limit of Equation 3.3.6 is the function

γ−t =

γ0− (1+αt)

2+ατ if t ∈ [0, τ)
γ0− otherwise

(3.3.7)
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Proof: Following directly from Equation 3.3.6, the following can be written

∆γ−0 = ∆γ−τ = γ0−(1−m)
1−m2 + n(1−m)2

∆γ−ih = ∆γ−0 (1−m) ∀ ih ∈ Ξ \ {0, τ}

And then, the rate of continuous trade is calculated by taking, for any ih ∈ Ξ \ {0, τ}

lim
n→∞

∆γ−ih
τ/n

= lim
n→∞

γ0−

τ
(

1+m
n(1−m) + 1

) LH= αγ0−

2 + ατ

A similar calculation is done to show limn→∞∆γ−0 = γ0−/(2 + ατ), thus allowing the
function to be constructed. �

By this point, it comes as no surprise that the continuous equations are linear – we figured
as much from the nature of Figure 3.3.3. We also had the foresight to see that the market
impact coefficient does not influence the optimal liquidation strategy in a simple market.
However, what we can now answer is precisely how the market resilience rate influences
trading. In the limit where α → 0, the agent is compelled to avoid permanent price
dislocations by continuously trading, and instead evenly allocates block trades at the
beginning and the end of the horizon. In the other limit where α → ∞, trading is done
uniformly throughout the horizon at a rate matching γ0−/τ , with no block trades at all.

A succinct, closed-form solution is what motivates our next approach.

3.3.5 A Variational Approach

In the analysis to follow, the mean-variance minimization will be preserved, however,
the objective is taken under a different functional form. In leading to the new objective
statement, we consider an alternative expression for the transaction costs Cτ , as presented
in the following proposition.

Proposition 3.3.3 A feasible trading policy γ ∈ Γ will incur transaction costs which
may be written

Cτ (γ) = R0−
∫

[0,τ ]
e−αtdγt + S0−

∫
[0,τ ]

e−αt|dγ|t

+ 1
2λ

[
(Rτ −R0−e

−ατ )2 + (Sτ − S0−e
−ατ )2

]
+ α

λ

∫ τ

0

[
(Rt− −R0−e

−αt)2 + (St− − S0−e
−αt)2

]
dt

(3.3.8)

Proof: The arguments to follow are based on Lemma 2.1 from [59]. The underlying
theory is supported by [44], Definition I.4.45, Proposition I.4.49 a), and Theorem I.4.52.
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The transaction costs Cτ may be written

Cτ (γ) =
∫

[0,τ ]
Rt−dγt +

∫
[0,τ ]

St− |dγ|t + λ
∫

[0,τ ]
d[γ, γ]t (3.3.9)

Using Equation 3.3.9 as a starting point, consider the first term involving R. Plugging
in Equation 3.2.4 yields∫

[0,τ ]
Rt−dγt = R0−

∫
[0,τ ]

e−αtdγt + λ
∫

[0,τ ]

∫
[0,t)

e−α(t−u)dγudγt

Defining Zt =
∫

[0,t] e
αudγu, it follows that∫

[0,τ ]
Rt−dγt = R0−

∫
[0,τ ]

e−αtdγt + λ
∫

[0,τ ]
e−αtZt−dγt

= R0−
∫

[0,τ ]
e−αtdγt + λ

∫
[0,τ ]

e−2αtZt−dZt

= R0−
∫

[0,τ ]
e−αtdγt + λ

2

∫
[0,τ ]

e−2αtdZ2
t −

λ

2

∫
[0,τ ]

e−2αtd[Z,Z]t

Applying integration by parts on the second term results in∫
[0,τ ]

Rt−dγt = R0−
∫

[0,τ ]
e−αtdγt + λ

2
(
e−2ατZ2

τ − Z2
0−
)

+ λα
∫ τ

0
e−2αtZ2

t−dt−
λ

2

∫
[0,τ ]

e−2αtd[Z,Z]t

Which is followed by the back-substitution of Zt− = eαt(Rt− −R0−e
−αt)/λ∫

[0,τ ]
Rt−dγt = R0−

∫
[0,τ ]

e−αtdγt + 1
2λ(Rτ −R0−e

−ατ )2

+ α

λ

∫ τ

0
(Rt− −R0−e

−αt)2dt− λ

2

∫
[0,τ ]

d[γ, γ]t

An identical routine shows a similar result for the second term in Cτ involving S.
This leads to the desired form for Cτ . �

Then following immediately from Proposition 3.3.3, the optimal continuous-time trad-
ing policy γ ∈ Γ is the following minimizer

γ̂ = arg inf
γ∈Γ

Jτ (γ) (3.3.10)

with the convex cost functional, defined separately for β = 0 and β > 0

Jτ (γ) =

βσ2

2
∫ τ

0 (γt− − µ
βσ2 )2dt+ 1

2Cτ (γ) if β > 0
µ
∫ τ

0 γt−dt+ 1
2Cτ (γ) otherwise

(3.3.11)
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and Cτ (γ) is taken as per Equation 3.3.8.

Following the approach established by [59], the time now comes to determine the
buying- and selling-subgradients for Jτ (·) which will come to define the first order opti-
mality conditions. To facilitate this, allow for the term-wise separation of Jτ (·) into

Jτ (γ) = Dτ (γ) + Lτ (γ) +Qτ (γ) (3.3.12)

where

Dτ (γ) =

βσ2

2
∫ τ
0 (γt − µ

βσ2 )2dt if β > 0
µ
∫ τ

0 γtdt otherwise
(3.3.13)

Lτ (γ) = 1
2R0−

∫
[0,τ ]

e−αtdγt + 1
2S0−

∫
[0,τ ]

e−αt|dγ|t (3.3.14)

Qτ (γ) = 1
4λ

[
(Rτ −R0−e

−ατ )2 + (Sτ − S0−e
−ατ )2

]
+ α

2λ

∫ τ

0

[
(Rt− −R0−e

−αt)2 + (St− − S0−e
−αt)2

]
dt

(3.3.15)

The exercise in determining the buying- (+) and selling- (−) subgradients ∇±t Jτ (γ)
is handled by the next proposition.

Proposition 3.3.4 For the convex cost functional as per Equation 3.3.12, for all t ∈
[0, τ ]

∇±t Jτ (γ) = ∇±t Dτ (γ) +∇±t Lτ (γ) +∇±t Qτ (γ) (3.3.16)

where

∇±t Dτ (γ) =
±βσ

2 ∫ τ
t (γu − µ

βσ2 )du if β > 0
µ otherwise

(3.3.17)

∇±t Lτ (γ) = 1
2(S0− ±R0−)e−αt (3.3.18)

∇±t Qτ (γ) = 1
2e
−α(τ−t)

[
(Sτ ±Rτ )− (S0− ±R0−)e−ατ

]
+ α

∫ τ

t

[
(Su ±Ru)− (S0− ±R0−)e−αu

]
e−α(u−t)du

(3.3.19)

Proof: This proof is divided into two parts; firstly, the buying- and selling-subgradients
will be calculated for Dτ (Lτ and Qτ are analogous but slightly more tedious) and sec-
ondly, using the well known property of convex functions, ∇±t Jτ (γ) will be calculated.
The arguments here follow that of [59], Lemma 4.5.

Part I: Calculating the subgradients. Considering two trading policies ξ, γ ∈ Γ,
each with the same starting inventories ξ0− = γ0−. Take ε ∈ (0, 1] and define

δX = lim
ε→0

Xτ

(
εξ + (1− ε)γ

)
−Xτ (γ)

ε
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The calculation for Dτ when β > 0 will be provided, with the remaining subgradients
following suit analogously. Preliminary simplifications give

δD = βσ2
∫ τ

0

(
γt −

µ

βσ2

)
(ξt − γt)dt

Using ξt − γt =
∫

[0,t](dξ+
u − dγ+

u )−
∫

[0,t](dξ−u − dγ−u )

δD = βσ2
∫ τ

0

∫
[0,t]

(
γt −

µ

βσ2

)
(dξ+

u − dγ+
u )dt

+ βσ2
∫ τ

0

∫
[0,t]

( µ

βσ2 − γt
)
(dξ−u − dγ−u )dt

An application of Fubini’s Theorem yields the following

δD = βσ2
∫

[0,τ ]

∫ τ

u

(
γt −

µ

βσ2

)
dt (dξ+

u − dγ+
u )

+ βσ2
∫

[0,τ ]

∫ τ

u

( µ

βσ2 − γt
)
dt (dξ−u − dγ−u )

Which gives way for the assignment of ∇±t Dτ (γ), provided that β > 0

∇±t Dτ (γ) = ±βσ2
∫ τ

t

(
γu −

µ

βσ2

)
du

Part II: Convex Argument for the Construction of ∇±t Jτ (γ).

Jτ (γ) is a convex function, so it holds that

εJτ (ξ) + (1− ε)Jτ (γ) ≥ Jτ
(
εξ + (1− ε)γ

)
=⇒ Jτ (ξ) + Jτ (γ) ≥ lim

ε→0

Jτ
(
εξ + (1− ε)γ

)
− Jτ (γ)

ε

≥
∫

[0,τ ]

(
∇+
t Dτ (γ) +∇+

t Lτ (γ) +∇+
t Qτ (γ)

)
(dξ+

u − dγ+
u )

+
∫

[0,τ ]

(
∇−t Dτ (γ) +∇−t Lτ (γ) +∇−t Qτ (γ)

)
(dξ−u − dγ−u )

Which leads to the desired assignment

∇±t Jτ (γ) = ∇±t Dτ (γ) +∇±t Lτ (γ) +∇±t Qτ (γ) (3.3.20)

�

Having formulated the buy- and selling-subgradients, we can now proceed directly to
a solution method.
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3.3.6 Revisiting the Simple Market

As per [59], the first order optimality condition is the requirement that ∇±t Jτ (γ) ≥ 0
over the trading horizon. Characterizing the subgradients over the entire state-space is
challenging, and requires a dutiful parameterization over disjoint regions where the policy
purchases, sells and holds. For such an approach, we defer to [59]. In proceeding, we note
that the task greatly simplifies for trading policies which are absolutely continuous over
the entire trading horizon, then ∇±t Jτ (γ) = 0. Recognizing that Proposition 3.3.2 gives
a solution that is absolutely continuous over (0, τ), we now show how the variational
argument we just constructed can be used to verify the continuous solution found in
Proposition 3.3.2.

Formally stated, the proceeding objective is to use the first-order optimality condition
to determine a continuous trading policy active over (0, τ) for a risk-neutral agent in a
simplified setting. Recall that this means that the simple market carries no drift and
introduces no initial tightness nor bias. These assumptions greatly simplify the expression
of the subgradient, leading to ∇±t Dτ (γ) = ∇±t Lτ (γ) = 0. This gives the following to
deduce the dynamics of the optimal policy

∇±t Qτ (γ) = 1
2e
−α(τ−t)(Sτ ±Rτ ) + α

∫ τ

t
(Su ±Ru)e−α(u−t)du (3.3.21)

Setting ∇−t Qτ (γ) equal to zero and taking the derivative of with respect to t gives
α

2 e
−α(τ−t)(Sτ −Rτ ) + α2

∫ τ

t
(Su −Ru)e−α(u−t)du− α(St −Rt) = 0 (3.3.22)

Now, multiplying by e−αt and integrating by parts results in

α
∫

[t,τ ]
e−αu(dSu − dRu)−

α

2 (Sτ −Rτ )e−ατ = 0 (3.3.23)

Further differentiating over (0, τ) and once again multiplying by eαt yields

dSt − dRt = 0 (3.3.24)

By substituting in the dynamics from Equation 3.2.4 and Equation 3.2.5, the nature of
γ̇t
− is revealed to be

2λdγ−t − α(St −Rt)dt = 0 (3.3.25)

γ̇t
− = α

2λ(St −Rt) (3.3.26)

Once more differentiating and further substituting the spread dynamics from Equa-
tion 3.2.2 and Equation 3.2.3 produces a second-order ODE for γ−t

dγ̇t
− = α

2λ(dSt − dRt) (3.3.27)

dγ̇t
− = α

2λ
[
2λdγ−t − α(St −Rt)dt

]
(3.3.28)

γ̈t
− = 0 (3.3.29)
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Which clearly implies a linear form for the continuous trading policy, which we write as

γ−t = ct+ d (3.3.30)

for c, d ∈ R. What remains to be determined are the two boundary conditions that would
specify the solution uniquely. We already know that the optimal trading policy calls for
a block trade at the beginning and at the end of the trading horizon. We use this prior
understanding to extend our framework to allow for such – in fact, we even know that
the magnitudes of these block trades are equal, but we will show that this result follows
naturally.

Consider the block trade made at the beginning, of size ∆γ−0 . Then d = ∆γ−0 follows
immediately. Now after this block trade is made, both of the induced spreads react such
that R0 = −λ∆γ−0 and S0 = λ∆γ−0 . This then directly provides inference to c = α∆γ−0 ,
which comes from differentiating Equation 3.3.30 and equating it to γ̇0

− = α
2λ(S0 − R0)

from Equation 3.3.26.

To summarize, our reasoning thus far has returned γ−t = ∆γ−0 (1+αt) for all t ∈ (0, τ).
This form indeed matches that of Proposition 3.3.2, but what still needs to be determined
is the magnitude of ∆γ−0 and ∆γ−τ . To this effect, we appeal to the fact that a feasible
strategy is one that completely liquidates the inventory holdings, so

∫
[0,τ ] dγ

−
t = γ−0 .

Evaluating this integral results in an expression which relates the two block trades ∆γ−0
and ∆γ−τ

∆γ−0 (1 + ατ) + ∆γ−τ = γ−0 (3.3.31)

The final step is to then recognize that Equation 3.3.29 indicates that Equation 3.3.26
is constant. As a result, evaluating Equation 3.3.23 with t = τ directly reveals that
∆γ−0 = ∆γ−τ . Finally, Equation 3.3.31 gives ∆γ−0 = γ−0 /(2 +ατ) to finish our case study.

Indeed, we can proceed further with the variational arguments to recover dynamics for
a more generalized continuous-time system. However, we acknowledge that these efforts
would closely follow that from [59], and conclude on the verification of the results we first
derived under the simple market.

3.4 Future Work

As a summary, we have taken a transient price impact model and have shown how optimal
liquidation can be approached on the induced price dynamics. The main contribution
from our work is with the discrete-time modelling of the optimization objective as a
Quadratic Program. This very simple technique comes in direct contrast to the more
complicated, and often intractable, technique of using a Hamilton-Jacobi-Bellman style
equation. The significance of our work is demonstrated from the alignment of our results
to that from inspiring sources in [4] and [59].
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We acknowledge two areas of continued work that inform next-step considerations:

I Next-step 1: We credit the variational approach from [59] as a strong method to
recover dynamics of optimal liquidation strategies under a transient price impact model.
Continued work would pick-up directly where we leave off, and expand the variational
argument outside of the simple market assumptions. Through preliminary work, we
propose that the dynamics of the optimal liquidation policy γ−t abides by

γ̈t
− = α2βσ2

2αλ+ βσ2

(
µ

βσ2 − γt
)

With the general form

γ−t = c1e
θt + c2e

−θt + γ0 −
µ

βσ2

Matching exactly that from [59]. Future work should prove this proposed dynamic.

I Next-step 2: A comprehensive extension of our work is to expand the dimension-
ality. Whereas we focus only on liquidating a single asset, if (A)t≥0, (B)t≥0 and (P )t≥0

become p-dimensional then market-parameters are written as the matrices Λ ∈ Rp×p

and α ∈ Rp×p. Furthermore, if adversarial agents are introduced through an aggregate
inventory process ξ, then a Nash equilibrium can be studied.

These proposed modifications would culminate in price dynamics given by

dAt = dPt + Λ(dγ+
t + dξ+

t )− α(At − Pt)dt
dBt = dPt − Λ(dγ−t + dξ−t )− α(Bt − Pt)dt

A further extension of work along the vein of Order Execution is to consider a models-
free approach. For this, we proceed to the next chapter to outline an application of Deep
Reinforcement Learning for Order Execution.
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Chapter 4

An A3C Model for Order Execution

For real securities, price dynamics are more complicated than that studied in chapter 3.
Limit order books are generally not block shaped [68]; market impacts are not linear
[97] [11]; market resiliency is a function of aggregated trading activity on the exchange
[49]; and external events play a role in price discovery as well. Modelling for all such
factors greatly encumbers analytical approaches and quickly leads to intractable systems.
Reinforcement Learning offers an appealing models-free substitute to make abstract these
complicated dynamics.

The roadmap for this chapter is presented as follows:

In section 4.1, we broadly introduce various Machine Learning techniques applied
to financial data and formalize the Order Execution objective as it relates to Volume-
Weighted Average Price (VWAP) execution.

In section 4.2, we present an approach to develop a Deep Reinforcement Learning
model to tackle the Order Execution objective. As in chapter 2, we utilize an A3C
algorithm and attempt to teach an autonomous agent to perform VWAP execution. We
develop three candidate environments for simulated trading; the first environment derives
from the block shaped limit order book, the second uses historical data from Nasdaq, and
the third draws from a real-time market simulator. We progress our application on the
last environment, but realize only modest results in section 4.3.

Recognizing ample areas of improvement, section 4.4 concludes the work from this
chapter on a proposed connected to the Advice & State-Driven (ASD) decisioning model
studied in chapter 2.

4.1 Background

In chapter 3, we saw how a risk-informed agent would maximize her profits under a
transient price impact model. Many practical applications of Order Execution tie trading
to a benchmark, such as VWAP or the Time-Weighted Average Price (TWAP) [53].
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Considering a benchmark execution strategy paves the way for Transaction Cost Analysis
(TCA) to indicate ex-post how a trader’s execution compared against the average market
execution over the same time horizon. In this vein, execution that bests VWAP is viewed
favourably and is crucial for winning client-flow in a competitive landscape.

The content in this section introduces VWAP execution strategies and their related
applications with Reinforcement Learning. General discussions pertaining to feature-
normalization for use-cases with financial data is also given and becomes relevant as we
discuss our modelling approach in section 4.2.

4.1.1 VWAP Trading Strategies

It is generally accepted that more trading activity is observed near market-open and
market-close, characterizing a ∪-shaped pattern in the intraday quote volume [27]. Such
patterns are vaguely identified in Figure 4.1.1, which presents the intraday volume flow
for select technology stocks as observed on June 21st 2012.

(a) AAPL intraday volumes (b) AMZN intraday volumes

(c) INTC intraday volumes (d) MSFT intraday volumes

Figure 4.1.1: The intraday volume profile for select technology stocks on June 21st, 2012.
Orders are aggregated at every second and the heatmap is binned over 5 minute intervals.
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The intraday volume flows play a critical role in any VWAP trading strategy, and
understanding why follows directly from the ex-post calculation of VWAP. Formally, the
Volume-Weighted Average Price for a security over the time horizon [0, τ ] follows the
straight-forward calculation

VWAP[0,τ ] =
∑
t∈[0,τ ] ptvt∑
t∈[0,τ ] vt

where pt, vt are the prices and respective volumes executed at each time t. It is ap-
propriate to attribute a Market VWAP – in which case the prices and volumes used for
the computation aggregate from what is executed in the exchange – just as it is appro-
priate to attribute a strategy-specific VWAP – then, prices and volumes come from the
given strategy. The trader’s execution cost is typically how VWAP is referred to on a
strategy-basis.

When execution costs meet or best the Market VWAP, then the trading strategy is
usually profitable. To understand why, consider a hypothetical example where a pension
fund is looking to sell shares of a security which they hold a large inventory of. The
pension fund itself may not be well-positioned as a dealer to execute this large trade
in the market. Rather than directly incur punitive transaction costs on the order, the
pension fund can appeal to the services of a brokerage firm to efficiently execute the order
on their behalf. The brokerage firm would commonly acquire the position on a liability
basis – that is, acquiring the position outright – and charge fees on a per-share basis.
When the fee structure is directly tied to VWAP, then the brokerage firm has a clear
profit objective: execute the position at an average price that exceeds VWAP by as large
of a margin as possible. In this example, the pension fund is satisfied that their position
is alleviated, and the brokerage firm can make a profit with an effective VWAP trading
strategy.

A standard approach to the VWAP strategy comes from estimating an expected
volume profile over the execution horizon and proportionately executing orders to match.
A primer for VWAP strategies is given in [57].

VWAP execution strategies are studied under a transient price impact model, similar
to that from chapter 3, in [8]. A more general stochastic model is considered in [18],
where findings present a closed-form VWAP strategy that intrinsically tracks TWAP
with appropriate offsets accounting for order-flow. Owing to the simple breakdown of
the optimal VWAP strategy from [18], we will incorporate TWAP as a component in the
reward signal when we train our A3C model to learn VWAP execution. Having said that,
we now proceed to briefly introduce related applications of Machine Learning and Deep
Reinforcement Learning to a financial setting.
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4.1.2 Applications of Machine Learning to Order Execution

Machine Learning methods are now commonly applied to topics in Quantitative Finance.
In terms of predicting price movements, regression techniques such as that from [99] form
a baseline which can be extended to Feedforward [55], Recurrent [25] and Convolutional
[98] Neural Network structures.

In the case of [98], with limit order book features it is shown that convolutional net-
works can apply a feature-mapping that recovers a measure for the order book imbalance.
Order book imbalance calculates the normalized quote-volumes at a particular level in
the order book. By specifying a limit order book of depth N by the set of quad-tuples
{(p(l)

b , v
(l)
b , p

(l)
a , v

(l)
a )}Nl=0, the feature-mapping outputs a micro-price p̃(l) for the lth level in

the order book based on

p̃(l) = v
(l)
b

v
(l)
b + v

(l)
a

p(l)
a + v(l)

a

v
(l)
b + v

(l)
a

p
(l)
b

Order book imbalance is treated as a technical indicator for the direction of price-
movements and helps inform various kinds of trading strategies [54] [74]. We appeal to
the convenient economic interpretation and utilize convolutional layers in our A3C model.

Significant work in the space of feature-normalization has led researchers in [64] to
produce a limit order book dataset, based on Nordic stocks, that is specifically designed
for Machine Learning approaches. Shown further in [66] is a method for an adaptive
normalization technique which is shown to sufficiently account for non-stationary data
and produce stable predictions. We take these results as evidence in favour of a feature-
normalization technique and adopt a simple version.

Shifting focus now to Reinforcement Learning applications, the pioneering work from
[62] demonstrated that a variant of Q-Learning can train an agent to effectively set prices,
and impart up to a 12.9% reduction in total transaction costs over comparable “submit-
and-leave” orders. Of further significance is the work from [39], where the famous Almgren
and Chriss model was cast into one compatible with Q-Learning. Here, the authors
attempt Implementation Shortfall – a strategy which minimizes slippage – and credit
profits that are on average 10% larger than the baseline Almgren and Chriss framework.
Extending consideration to risk-averse Reinforcement Learning, material from [81] derives
an action-value update rule that incorporates a concave utility function. The experiment
performed in [81] demonstrated that an agent trained under the risk-averse Reinforcement
Learning approach was able to maintain low transaction costs during the exceptional
“Flash-Crash” market event observed on May 6th 2010, and noted an otherwise muted
response when compared to a risk-neutral agent.

Further academic extensions of Deep Reinforcement Learning applied to Order Exe-
cution remain relatively few in number. Noteworthy is the contributions of [63], for first
adapting a Double-Deep Q-Network that trains for Optimal Order Execution. Given the
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results indicating overall outperformance, we are encouraged to adapt an A3C model
to target VWAP execution. To the best of our knowledge, there has been no academic
contributions of A3C approaches to this objective. We then will carefully detail our
approaches in the upcoming section.

4.2 Methodology

In the content to follow, we introduce three environments for a limit order book that
facilitate the development of an A3C application to Optimal Order Execution. Brief
comments are provided which outline the setup for each environment and explain the
comparative advantages and disadvantages of each. Open-source code is provided and
we encourage the continued development and modification of this code.

We settle on a real-time simulator for the development of our A3C model. We then
proceed to introduce the baseline Neural Network structure, as highlighted by two con-
volutional layers and an LSTM cell. The training scheme is summarized by addressing
the relevant input features, formulating the action space and designing the reward signal
that completes our approach.

We conclude the methodology section by addressing a model for an accompanying
ASD learner that can enhance future training approaches. Due to time constraints with
this project, we cannot implement this approach with our work here.

Now, beginning on a remark detailing our computing system.

4.2.1 Computing System Configurations

All models in this chapter are trained using a shared Windows 2012 Server with an
Intel® Xeon® Processor E5-2697 v4. There are 36 threads available to run the A3C
model, although no more than 16 are used. No GPU’s are used for training since the
environment that we train our model on proves unconducive. Precisely why relates to
a training scheme that is performed in real time, with latency delays that negate any
performance benefit from using a GPU.

4.2.2 Revisiting the Block Shaped Limit Order Book

In section 3.2, we developed a model for the block shaped limit order book. Now, we
work this model into one that is compatible for a Reinforcement Learning application.
Consider the transient price impact model for an asset’s bid- and ask-price

dAt = dPt + λdγ+
t − α(At − Pt)dt

dBt = dPt − λdγ−t − α(Bt − Pt)dt
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Where γ±t provides the quantity of shares purchased (+) or sold (−); functions which are
non-decreasing and right-continuous with left limits. Further, λ > 0 provides the market
depth factor which imparts the cost of a trade and α > 0 gives the rate of recovery for
the market. (P )t≥0 is the fundamental price process, which may be taken as a Brownian
Motion or reserved as a price observation. Both equations for the bid- and ask-prices can
be solved, to give

Bt+δt = Pt+δt + (Bt − Pt)e−αδt − λ
∫

[t,t+δt]
e−α(t+δt−s)dγ−s (4.2.1)

At+δt = Pt+δt + (At − Pt)e−αδt + λ
∫

[t,t+δt]
e−α(t+δt−s)dγ+

s (4.2.2)

For each instance of time t within the trading horizon and for any arbitrary time-step
δt. Then, Equation 4.2.1 (resp. Equation 4.2.2) can be taken as the resulting price
dynamics for an agent looking to liquidate (resp. acquire) an inventory of shares. Briefly
describing a practical setting, trading would take place at discrete points over a given
time horizon, and the agent must decide how much of her inventory should be traded at
each point in time. The agent would accordingly post a market order, recover the profits
from the trade, and observe an impacted price state.

Under a practical approach, the integration in Equation 4.2.1 and Equation 4.2.2
becomes a summation, and transaction costs are levied in direct proportion to the quan-
tity traded. Since the block shaped limit order book assumes uniform density beyond the
best available bid- or ask-price, there is no support for an agent posting limit orders.

The main advantage to modelling with the block shaped limit order book comes from
simplicity – the dynamics are convenient to specify and the model offers flexibility in terms
of how (P )t≥0 is defined. Unfortunately, the simplicity of the model also means that it
can be a far departure from a real limit order book, lessening the relevance of application
and posing problems for Zero-shot Learning, as discussed in background section 2.1.4.
The approach may be appropriate for sufficiently liquid securities.

Since we have previously studied Order Execution on the block shaped limit order
book in chapter 3, we do not use this environment for an application of Deep Reinforce-
ment Learning. We do however provide source code1 for an adaptation that extends
OpenAI ’s “Gym” framework, which greatly simplifies the training scheme.

4.2.3 Reconstructing the Historical Limit Order Book

When training on a modelled limit order book is deemed inappropriate, attention shifts
towards using historical data. Several exchanges sell historical data from their limit order
books, including Nasdaq’s TotalView [61] and the New York Stock Exchange’s Open Book
Ultra [26]. The data coming directly from a stock exchange provides a rich foundation

1OpenAI “Gym” Environment for the block shaped limit order book: https://github.com/
mbreiter/drloe_block
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to study Market Microstructure, but drawing an application is challenged because the
pricing is expensive for small-scale use and even still, the limit order book needs to be
reconstructed. Addressing both of these challenges is the LOBSTER service2.

Limit Order Book System - The Efficient Reconstructor, or LOBSTER for short, is an
academic resource that provides high quality historical limit order book data from Nas-
daq’s TotalView. LOBSTER is commonly used as a data provider for empirical studies
on the limit order book; [38] for example. While there is a subscription fee to access LOB-
STER, five free data samples are provided for select technology stocks – MSFT, INTC,
AAPL, GOOG and AMZN – that motivate our adaptation of a compatible environment
for Reinforcement Learning. The free data, dated for June 21st 2012, provides bid- and
ask-quotes up to ten levels deep, and is given at a millisecond resolution throughout the
entire trading day. Figure 4.2.1 shows how real orders are distributed in the limit order
book for MSFT, at approximately an hour before market-close. Further, Table 4.2.1
provides an intraday average for the Bid/Ask Spread and the Volume Imbalance.

Figure 4.2.1: The Limit Order Book for MSFT on June 21st, 2012 at 14h 48m 56s.

Our methodology for constructing an environment is described as follows. We reserve
four stocks for training – INTC, AAPL, GOOG, AMZN – and designate MSFT for
testing. We consider only short execution horizons, lasting one minute, to maximize the
number of unique, but not uncorrelated, trajectories that we can generate from a single

2LOBSTER Academic Data: https://lobsterdata.com/info/WhatIsLOBSTER.php
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Table 4.2.1: Order Book characteristics for select technology stocks on June 21st, 2012.

Ticker Average Bid/Ask Spread ($) Average Imbalance
AAPL 0.1535 -0.0697
AMZN 0.1309 -0.103
INTC 0.0123 -0.0601

GOOG 0.2962 0.0005
MSFT 0.0123 0.0288

days worth of data. We then randomly query a starting time throughout the day and
initialize the agent’s state on the limit order book as rendered. The interpretation of
this setup is that a trader may receive an order request from a client at any point during
the day. The agent then begins trading, progressing through each time indexed state of
the limit order book. We utilize a simple order matching engine that immediately fills
active orders and queues any remaining passive component at an appropriate level in the
order book. The state of the order book is updated at each training episode, but we
persist any of the agent’s outstanding orders and execute these on a time-priority basis.
Further, we approximate an agent’s market impact by preprocessing each time indexed
state of the order book to filter out any quotes that would have already been filled by the
agent’s executed trades. This is an approximation to market impact because, by using
historical data, we fundamentally rest on the assumption that the agent’s trading activity
does not influence price evolution. In a real market, if a reckless trader is moving prices
significantly, then new orders would be posted in response. While our approach cannot
account for this real-life dynamic, we are able to ensure that the agent is exposed to the
effects of her own trading. Trading as outlined continues until the time horizon is spent,
in which case we reset by randomly picking another starting time and beginning anew.

In our application, we are severely limited by only having data for a single day.
We cannot reasonably justify that the stocks are uncorrelated – they certainly would be
correlated – and we cannot generalize further beyond short execution windows, where
price evolution would play a diminished role in the execution strategy. For these reasons,
we do not progress our study with the LOBSTER-based environment but make available
the source code for those who might have a subscription to LOBSTER3.

Finally, we present the environment which we progress our application on.

4.2.4 Trading in a Simulated Stock Environment

The Rotman School of Management at the University of Toronto maintains the Rotman
Interactive Trader4 (RIT) application, which is a comprehensive simulation of an order-

3OpenAI “Gym” Environment for a LOBSTER-based limit order book: https://github.com/
mbreiter/drloe_lobster

4The website maintaining resources for the RIT application: http://rit.rotman.utoronto.ca/

73

https://github.com/mbreiter/drloe_lobster
https://github.com/mbreiter/drloe_lobster
http://rit.rotman.utoronto.ca/


driven market. RIT enables interactive trading in real-time and maintains a centralized
limit order book that all participants on the server can view and post orders to. Fur-
thermore, the underlying price diffusion for a security in RIT is a Geometric Brownian
Motion, from which the price path is supported, in the absence of market participants,
by computerized agents that scatter the order book with quotes.

As a rich educational resource, RIT also proves compatible to train a Reinforcement
Learning model for VWAP execution. Trading on RIT is carried-out in “heats”, each
lasting approximately five minutes. The parameters stipulating liquidity conditions are
configurable, so we choose to build our environment for a security that has ample liquidity.
Furthermore, we allow both a modest drift and volatility factor to characterize the price
path of the security that we trade in RIT.

Our methodology for constructing an environment on RIT is described as follows.
We instantiate a connection to RIT after opening the application and configuring the
ports which facilitate all communication. We then allow an agent to post limit orders
by sending API requests to the RIT server, stipulating the details of the order. The
response to the agent is returned as the state of the market, with additional details such
as inventory and price levels in the order book. Trading in this fashion continues until a
predefined terminal time is reached, after which the environment is paused until the RIT
server restarts and strikes again the starting point. Since RIT maintains the centralized
limit order book, our adaptation of the Reinforcement Learning environment is greatly
simplified and only requires caution when handling the API requests.

What is immediately worth noting about RIT is that the server instance is shared.
This poses an interesting twist to our A3C model which, as described in background
section 2.1.7, trains with distributed processes. The result of this means that all agents
in the distributed network are exposed to the actions of one another, whereas typically,
these environments are kept separated. From this perspective, the shared environment
mimics a setting with a Nash equilibrium. All that to say, we are attuned to this effect.

We chose to train our A3C model on the environment adapted to RIT, justifying that
the simulation engine offers a sufficiently dynamic limit order book that extends beyond
the transient price impact model. The source code for the Open AI “Gym” extension is
made available at a public repository5.

Having described the training environments, allow us now to introduce our model
structure.

4.2.5 Training Scheme for the Baseline Model

Figure 4.2.2 presents the structure of the Neural Network which is used to support
VWAP execution. In the content to follow, we justify the design considerations for the
network, and discuss the training scheme.

5OpenAI “Gym” Environment for RIT: https://github.com/mbreiter/drloe_rit
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Figure 4.2.2: The Neural Network designed for VWAP execution.

4.2.5.1 Input Features

As per Figure 4.2.2, the input space consists of 27 features taken in the form of two
components: the first capturing the limit order book data and the second providing
relevant state details. These features are summarized below:

Limit Order Book Features :
{(

p
(l)
b

Np

,
v

(l)
b

Nv

,
p(l)
a

Np

,
v(l)
a

Nv

)}4

l=0
∈ R20

State Detail Features :
(COST[tstart,t]

Np

,
VWAP[tstart,t]

Np

,

t− tstart

tend − tstart
,
I

Nρ

,
ρt
Nρ

,
ρ̃t
Nρ

,1{t=tend}

)
∈ R7

Where p(l)
b , p(l)

a are the bid- and ask-prices for the lth level in the limit order book; v(l)
b , v(l)

a

are the bid- and ask-volumes for the lth level in the limit order book; I is the inventory
that the agent must liquidate (resp. acquire); ρt is the position at time t which has
been executed; ρ̃t is the magnitude of any pending orders at time t; and Np, Nv, Nρ are
normalization factors for the prices, volumes and positions respectively.

We carefully consider which state details should be fed into the network. It is impor-
tant that the model is exposed to both the agent’s COST and VWAP, since we seek a profit
maximizing strategy based on these endogenous variables. Further, the agent should also
preserve some sense towards her position executed and amount left outstanding, so as
to inform decisions pertaining to the tradeoffs between guaranteed price execution and
favourable price-setting. The time-based features are included so the agent is aware of
the constraint requiring execution to be completed by the end of the time horizon.

Heeding the findings from [17], which attributes 78% of price discovery to the best bid-
and ask-prices, we consider only the first 5 levels in the limit order book. By narrowing
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our focus on the limit order book, we are able to reduce the dimension of the input space
without sacrificing any significant information loss.

The normalization techniques mentioned in section 4.1 are simplified to the point
where only constant factors are considered. For the present application, we take Np = 100
and Nv = Nρ = 10I. It is worth noting that the price of the security traded in the
environment always begins at $25.00 and never exceeds a price of $30.00, meaning all
input features are within the unit range [0, 1].

Figure 4.2.2 depicts the order book features passing through two sequential convo-
lutional layers. Each convolutional layer is one-dimensional with a (2× 1) kernel and no
stride nor padding is applied. When passed sequentially in such a manner, the output
result is a tensor with dimension reduced by a factor of four. Recalling that convolu-
tional layers apply a feature-mapping that is akin to an imbalance measure, as discussed
in section 4.1, the output from the convolutional layers can be treated as a technical
indicator for each price level in the order book. The output from the convolutional layers
is concatenated with the state detail features and the combined tensor is then subjected
to a familiar LSTM network.

Having discussed the structure of our network right up to the output layer, we now
address the action space that we permit for our agent.

4.2.5.2 Action Space Considerations

The model presented in Figure 4.2.2 trades by specifying an action tuple (a(T )
t , a

(Q)
t ),

where a(T )
t gives the trade type and a

(Q)
t gives the quantity to be traded. In a general

sense, a trader can submit a wide variety of order types, and she can indeed choose
to trade in any allotment size she wishes, provided that the volume is available in her
unspent inventory. Recognizing that these general cases greatly expand the size of the
action space, we take necessary steps to simplify the model. But first, we acknowledge
the class of trading strategies which we restrict our focus to.

Remark 4.2.1 We only consider VWAP strategies which are unidirectional; an agent
cannot deviate from her objective and purchase (resp. liquidate) when she is attempting
share liquidation (resp. acquisition). This condition becomes relevant for large firms
who are bound by strict regulations governing market manipulation. Conceivably, an
unbounded Reinforcement Learning agent might very well learn to trade a policy that
involves manipulating prices.

There are four types of trades that our agent can decide on, given in the following set
AT = {HOLD, BBO, MID-QUOTE, ACTIVE}. These actions have the following interpreta-
tions:

HOLD: calls for no trade to be executed;
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BBO: connotes a limit order posted at the best bid- or ask-price;

MID-QUOTE: outlines a limit order posted at the mid-quote;

ACTIVE: gives an active limit order, but unlike a market order, this type of limit
order will not walk-through the order book;

In addition to the trade types given by AT , which are always available for the agent
to act on, a MARKET-ORDER is executed at the end of the trading period if inventory is left
unspent. This clearing action effectively imposes a punitive charge, brought about by a
large market impact, if the agent does not complete her execution within the horizon.

The agent is not permitted to CANCEL her outstanding orders. A possible extension
of this framework might elect to include this action type, but we omit consideration on
account of the added complexity. What’s more, with the reward signal that we intend to
craft – that which will incentivize the tracking of TWAP – we anticipate that few orders
will be left outstanding.

Further, the agent can choose to trade quantities given by the percentages in following
set AQ = {i/200}10

i=0. These percentages, ranging from 0% to 5%, are interpreted as
quantities in view of the agent’s initial inventory position. For example, if the agent
must liquidate 10, 000 shares and it is decided that a(Q)

0 = 0.035, then 350 shares would
be traded. We feel justified in considering a reduced action-quantity space on account of
the TWAP tracking incentive in the reward signal; seldom should it be appropriate for
an agent to trade in large block sizes throughout the horizon. Furthermore, a reduced
action space is favourable given the computation limitations.

Together, the combined action space A = AT ×AQ permits 44 unique action tuples.
We now mention how the agent’s actions earn a reward.

4.2.5.3 Reward Signal Engineering

We draw inspiration from [18] to craft a reward signal that incorporates a TWAP tracking
component. The reward signal is given below, and is defined for both a liquidation (−)
and an acquisition (+) objective

r±(t) = 1{∣∣∣ ρt
I
− t−tstart
tend−tstart

∣∣∣≤ε} − 0.5

︸ ︷︷ ︸
incentive to track TWAP

+1{ρt−1 6=ρt}1
{
∓
(

COST[tstart,t]−VWAP[tstart,t]

)
≥0

}
︸ ︷︷ ︸

incentive to outperform VWAP

(4.2.3)

Where ε ∈ [0, 1] gives a tolerance parameter for deviating from TWAP, which we take
as ε = 0.05. As per Equation 4.2.3, the agent is incentivized to keep her position close
to the time-progression status throughout the horizon.
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The VWAP incentive is realized whenever an order is executed and imparts a unit-
reward if the agent’s COST at time t meets or exceeds the Market-VWAP at the time
of execution. Having introduced the reward signal, we will next remark on the training
scheme.

4.2.5.4 Distributed Training Approach

The A3C model is run with 16 training processes. Each training agent is assigned,
uniformly at random, either a liquidation or acquisition directive. The following pa-
rameters are also assigned randomly based on the discrete uniform distribution U(a, b):
I = 10, 000

(
10 + U(−4, 4)

)
, tstart = 5 + U(0, 75) and tend = 290−U(0, 100). Algorithm 3

outlines the adapted A3C algorithm that facilitates VWAP execution.

Algorithm 3 Asynchronous Advantage Actor Critic for VWAP execution
Inherit shared global parameters θT , θQ, θv and common global counter τ = 0
Initialize process-specific parameters θ′T , θ′Q, θ′v
Initialize process step counter t← 1
repeat

Reset gradients dθT ← 0, dθQ ← 0, dθv ← 0
Synchronize process-specific parameters θ′T ← θT , θ′Q ← θQ, θ′v ← θv
tstart ← t
repeat

Choose trade type a(T )
t and trade quantity a(Q)

t from st using π
Compute entropies e(T )

t , e(Q)
t

Execute trade
(
a

(T )
t , a

(Q)
t

)
, observe new state st+1

construct reward rt according to Equation 4.2.3
t← t+ 1
τ ← τ + 1

until st is terminal or t− tstart reaches the maximum step count

R =
0 st terminal
V (st, θ′v) otherwise

Initialize Generalized Advantage Estimator GAE← 0
i← t− 1
repeat
R← ri + γR
GAE← τγGAE + ri + γV (si+1, θ

′
v)− V (si, θ′v)

dθT ← dθT +∇θ′T

[
log π(ai|si; θ′T , θ′Q)GAE− 0.01e(T )

i

]
dθQ ← dθQ +∇θ′Q

[
log π(ai|si; θ′T , θ′Q)GAE− 0.01e(Q)

i

]
dθv ← dθv + ∂

∂θ′v

(
R− V (si, θ′v)

)2

i← i− 1
until i < tstart
Asynchronous updates of shared global parameters

until τ > maximum time for the episode
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4.2.6 Extensions to an ASD Learner

In Figure 4.2.3, a Neural Network model is presented that is conducive to an ASD
learning framework. In section 4.4, we discuss how such a framework can build on the
results we now present for VWAP execution.
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Figure 4.2.3: The Advice & State Driven scheme to train a Student for VWAP Execution.

4.2.7 Performance Evaluation

The testing scenario is conducted for an agent seeking liquidation, with an inventory of
I = 100, 000, a start-time of tstart = 5, and an end-time of tend = 290.

Our objective is to train the A3C model to execute at prices that meet or exceed
VWAP. In evaluating the performance of the model, we take the criterion that profits
are calculated as the excess between the cost COST[tstart,tend], and VWAP with a one-cent
discount, VWAP[tstart,tend] − 0.01. Therefore, a trading strategy that outperforms VWAP
would post profits exceeding ten basis points.

4.3 Main Results

Training consisted of approximately 1700 episodes over the course of one week. Fig-
ure 4.3.1 shows the learning curve, with a view of the agent’s episodic action distribu-
tions and quantity allocations. This figure becomes the subject for immediate analysis
and discussion.
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Figure 4.3.1: The training curve, action distributions and quantity allocations for the baseline
VWAP execution model.
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Throughout the training period, the agent posted a modest profit, but only after in-
cluding the one-cent discount from VWAP. When it came to tracking VWAP throughout
the training session, the agent underperformed by three basis-points on average.

Figure 4.3.1 provides insight into the learning progression of our agent. Within the
first 200 training episodes, the agent primarily posted limit orders at the mid-quote,
and traded almost exclusively in 2% allotment sizes. The result led to the most volatile
profit-levels realized throughout the training, as the agent traded through her inventory
early-on and was detrimentally unable to capture price appreciations towards the end of
the trading horizon. Profits realized during this early period of training are not attributed
to an effective execution.

For a short period, from about the 250th episode through to the 500th, the agent began
trading in smaller quantities and at more favourable prices. During this period, the agent
outperformed VWAP consistently. However, as the agent continued to explore her action
space, active orders became more frequent and larger swings in profits followed.

The agent appears to have learned to track TWAP, as evidenced by the large con-
centration of small order quantities. This would suggest that the TWAP tracking factor
dominates the VWAP outperformance incentive in Equation 4.2.3. In section 4.4, we
recommend adjusting the reward signal to better incentivize the agent to outperform
VWAP.

To better understand the actions of our agent in view of underlying market conditions,
we devise a testing experiment to compare the actions taken by the agent against the price
path of the security. Figure 4.3.2 presents the results from a testing period consisting
of 140 episodes. The agent observes a small profit – again with the one-cent discount to
VWAP – and selects her actions very consistently throughout the test. This includes a
clear bias towards trading in 0.5% allotment sizes.

To arrive at a better understanding as to how our agent is trading in the environment,
we study two episodes in Figure 4.3.3. The 139th episode was the most profitable for the
agent, and it becomes clear that this profit was earned by densely liquidating inventory
within the first half of the trading window. In contrast, the 87th episode brought trading
losses which amounted because the agent did not capture the upward price trend towards
the end of the horizon.

Results from Figure 4.3.3 suggest that the agent was able infer trends with the price
path, since even in the unprofitable episode, the agent abstained from trading when the
price was low at the beginning of the horizon. To this effect, the agent appears to struggle
with the timing of her trades. We hypothesize that more training would be required for
the agent to learn how to distribute her orders throughout the trading horizon.

We use these findings to inform recommendations for next-steps and future work.
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Figure 4.3.2: The testing results for the baseline VWAP execution model.
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(a) A profitable scenario for the agent. (b) A unprofitable scenario for the agent.

Figure 4.3.3: Performance of the VWAP execution agent in view of market dynamics.

4.4 Future Work

The results do not overwhelmingly indicate that the agent was successful in beating
VWAP consistently. There was evidence that the agent responded to the TWAP incen-
tive, but it remains that the agent did not effectively time her trades throughout the
horizon. Based on the performance, we acknowledge three next-step approaches:

I Next-step 1: We hypothesize that the performance would improve if the agent is
allowed to collect more experience. Given that the action space is large, consisting of 44
unique possible actions, it is conceivable that approximately 1700 episodes is insufficient
to inform an agent how to set price-levels, determine quantity allotments and distribute
orders appropriately throughout the trading horizon.

I Next-step 2: We suggest modifying the reward signal, Equation 4.2.3, to incor-
porate a stronger incentive for the agent to outperform VWAP. A proposed reward signal
is given below wherein the agent would directly receive a reward based on the magnitude
of outperformance with respect to VWAP.

r±(t) = 1{∣∣∣ ρt
I
− t−tstart
tend−tstart

∣∣∣≤ε} − 0.5

︸ ︷︷ ︸
incentive to track TWAP

∓ 100× 1{ρt−1 6=ρt}
(
COST[tstart,t] − VWAP[tstart,t]

)
︸ ︷︷ ︸

stronger incentive to outperform VWAP

(4.4.1)

Whereas the previous formulation only offered a unit-reward for outperformance,
Equation 4.4.1 provides negative reinforcement for any underperformance. The TWAP
incentive persists, since the agent appeared to respond favourably to this signal.
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I Next-step 3: With a modified reward signal comes an opportunity to adopt a
Teacher/Student learning framework, as studied in chapter 2. Under an ASD learner,
the agent trained under Equation 4.2.3 can act as a Teacher for a Student receiving
reinforcement from Equation 4.4.1. This approach would capture the positive learning
attributes observed in section 4.3, while focusing more on profit-maximization.

Indeed, we further motivate this continued work by presenting results from a small-
scale training session for the ASD model. As shown in Figure 4.4.1 on the following
page, the ASD learner was able to outperform VWAP by approximately 0.5 basis points.
While we were limited in time for developing this model, the early profit indications give
reason to believe that the modified reward signal from Equation 4.4.1 in tandem with
the ASD learning framework can effectively be utilized for Order Execution.

While more extensive testing and analysis would call for a direct comparison between
different trading strategies, in this work we have demonstrated the feasibility of applying
a Deep Reinforcement Learning approach for Order Execution.
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Figure 4.4.1: The training curve, action distributions and quantity allocations for the ASD
VWAP execution model.
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Chapter 5

Conclusion

This work has presented an application of Deep Reinforcement Learning for Volume-
Weighted Average Price execution. In order to do so, two supporting objectives were
introduced to address related concepts and methodologies that proved useful for the
Order Execution theme. While each chapter concluded on a note providing extensions
and/or recommendations for further work, we take the opportunity here to summarize
our approaches and again motivate development.

The Teacher/Student learning framework from chapter 2 outlines an efficient approach
to train Deep Reinforcement Learning models. The best performing Student model was
the ASD learner with preinitialized weights from the Teacher. Two of the ASD models
realized an average episode reward that was 3% (ref. Breakout) and 20% (ref. Beam-
rider) larger than their comparable preinitialized baseline models. While the results are
encouraging, the ASD model for Space Invaders underperformed the baseline model by
6% on account of the Teacher being suboptimally trained. As a result, the engineering
of the reward signal proves critical to the training scheme of Teacher model, and has a
downstream effect on the learning ability of the Student.

The success of the Teacher/Student learning framework depends on the complexity
of the environment, the relevance of the Teacher’s advice for the Student’s objective, and
the level of mastery achieved by the Teacher. The Teacher/Student learning framework
culminates to the following recommendation:

I Recommendation 1: The Teacher/Student framework is evidenced to train a
reference Deep Reinforcement Learning model more efficiently. To leverage this frame-
work, the parameters for the Student model should be preinitialized from the Teacher’s
network, and the structural component for the Student’s network should be under the Ad-
vice & State-Driven decisioning approach. The resulting ASD learner would be equipped
to learn enriched generalizations from the Teacher’s advice, and efficiently reconcile this
input with the environmental observation-stream.

The transient price impact model studied in chapter 3 provides an accessible entry
point to the study of Optimal Order Execution. The accessibility comes from a solu-
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tion method which avoids a complicated Hamilton-Jacobi-Bellman type equation, and
instead uses Quadratic Programming and Variational Calculus. Continued work under
this framework may be motivated by expanding the dimensionality of the model to cover
multiple assets or by introducing a game-theoretic approach to study a Nash equilibrium
for a market with competing agents.

The analysis of the discrete-time system offers meaningful insights into the influence
of market depth, resilience, tightness and bias on the optimal trading policies. In light
of the promising interpretations, the recommendation coming from this work is given:

IRecommendation 2: The block shaped limit order book is a convenient setting to
define a transient price impact model on and outline an Optimal Liquidation objective to.
The solution modelling in discrete-time is easily achieved as a Quadratic Program, and
the dynamics allow for insightful continuous-time representation. The take-away from
completing this work is a characterization of the richly diverse trading policies under
varying agent-specific and market-specific parameters.

Where chapter 2 makes familiar the Deep Reinforcement Learning approaches, chap-
ter 3 builds a relevant background for the Optimal Order Execution objective. From
this perspective, the A3C model for VWAP execution from chapter 4 is built on the
foundational work from the previous chapters.

The A3C model for VWAP execution is constructed from the ground-up, and involves
the careful implementation of trading environments which are conducive for Reinforce-
ment Learning applications. While the A3C model for VWAP execution remains simple,
and the accompanying results prove modest, the extensive detailing of the setup of-
fers ample room for improvements. Immediately, evidence shows that the ASD learning
framework would be well suited for supplemental training efforts. Under this pretext, the
final recommendation is summarized as:

I Recommendation 3: The A3C model is able to modestly track VWAP. The
limitations of the modelling scheme introduce an opportunity to consider an enhanced
reward signal, whereby an Advice & State-Driven learning model is a prime candidate
for supplemental training.

Optimal Order Execution has challenged those who study, or practice, the subject
to grasp the wonderfully complicated world of market microstructure. Just as Deep
Reinforcement Learning will continue to develop in maturity, so too will the connection
strengthen for applications to trading.
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