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A Brief Review of Optimal Liquidation Problems

Given an inventory of shares, how should an agent trade in order to
maximize her risk-adjusted utility?

Unmitigated policies contend with impact and uncertainty risk:

• Impact Risk: Trading too quickly or in large block sizes
carries a penalty as per the laws of supply/demand

• Uncertainty Risk: Trading too slowly compromises forecast
accuracy and faces pressure from risk aversion.

Seminal work from Almgren & Chriss (2001) introduced
temporary and permanent price impacts induced by the rate of
trade, extended to volume impacts by Obizhaeva & Jiang Wang
(2013) and Bank & Voß (2018).
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The Aim of the Work

The coupled bid/ask price model given in Bank & Voß (2018)
becomes the subject for refinement, under which the goals are to:

1. Introduce an impact model for the bid- and ask- price
capturing . . .

• . . . directional price sensitivity to trading volumes
• . . . transient price recovery towards an unaffected price

2. Develop a discretization framework that admits an optimal
trading policy

• with an appreciation for the economic drivers to the model

3. Extend the discrete model for continuous time representation
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Price Impact Model

Consider the trading policy γt defined by the non-decreasing cádlág
functions for the cumulative volume of purchases (+) and sales (-)

γt = γ0− + γ+
t − γ−t

Trading activity impacts the bid- and ask- price according to

dAt = dPt + λdγ+
t − α(At − Pt)dt

dBt = dPt − λdγ−t − α(Bt − Pt)dt

where

• λ > 0 is the trading impact coefficient :→ “Depth”

• α > 0 is the market resilience rate :→ “Resilience”

• (P)t≥0 is the fundamental price process, taken in the simplest
form dPt = µdt + σdWt
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Induced Spread Dynamics

The bid/ask spread S = A− B and the mid-quote Q = (A + B)/2
evolve according to

dQt = dPt +
1

2
λdγt − α(Qt − Pt)dt

dSt = λ|dγ|t − αStdt

for |dγ|t = dγ+
t + dγ−t .

Define R = 2(Q − P),

Rt = R0−e
−αt + λ

∫
[0,t]

e−α(t−u)dγu :→ “Bias”

St = S0−e
−αt + λ

∫
[0,t]

e−α(t−u)|dγ|u :→ “Tightness”

Remark: Under Bank & Voß (2018), dQt = dPt + 1
2λdγt .
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Liquidation Wealth Process

Under the linear transient price impact model, consider the wealth
received after selling ∆γ−t = γ−t − γ−t− shares of the asset at
t ∈ [0, τ ]

wt =

∫ ∆γ−t

0
(Bt− − λx)dx = Bt−∆γ−t −

λ

2
|∆γ−t |2

with purchasing treated analogously, this gives

dwt =
(
Bt− − λ∆γ−t

)
dγ−t −

(
At− + λ∆γ+

t

)
dγ+

t

Remark: The wealth dynamics suggest sub-optimality for any
simultaneous purchase and sale.
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Statement of the Optimal Control Problem
For some risk aversion level β ≥ 0, the objective is to solve for the
control γ which maximizes the agent’s mean-variance trade-off

E[Wτ ]− β

2
V[Wτ ]→ max!

When (Pt)t≥0 is an ABM with constant coefficients, the objective
is equivalent to finding the minimizer of J(·)

J(γ) =
βσ2

2

∫ τ

0
γ2
t dt + µ

∫
[0,τ ]

tdγt

+
λ

2

[
R0−

λ

∫
[0,τ ]

e−αtdγt +
S0−

λ

∫
[0,τ ]

e−αt |dγ|t

+

∫
[0,τ ]

∫
[0,τ ]

e−α|t−s|dγ−s dγ
−
t +

∫
[0,τ ]

∫
[0,τ ]

e−α|t−s|dγ+
s dγ

+
t

]
→ min!
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Discrete Time Modeling

Assumption

For an agent looking to maximize her risk-adjusted liquidation
wealth, trading is only allowed over an evenly spaced time grid
Ξ = {0, h, 2h, . . . , τ} for h = τ/n.

Under this framework, the minimization is now of Jn(γn)

Jn(γn) =
βσ2h

2

n∑
i=0

[ i∑
j=0

(∆γ+
jh −∆γ−jh)

]2

+ µh
n∑

i=0

i
(

∆γ+
jh −∆γ−jh

)
+ Cn(γ)→ min!

when defining the cost functional Cn(·)
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A Comparison of Policies in the Same Market
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Market Resilience & Depth as a Policy Driver
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Market Resilience & Depth as a Policy Driver
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Market Bias & Tightness as a Policy Driver
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A Convexity Argument

Owing to the convexity of the problem, for any two trading policies
ξ and γ having ξ0− = γ0− , the following holds given ε ∈ (0, 1]

Jτ (ξ)− Jτ (γ) ≥ lim
ε→0

Jτ (εξ + (1− ε)γ)− Jτ (γ)

ε

≥
∫

[0,τ ]
∇+

t Jτ (γ) (dξ+
u − dγ+

u )

+

∫
[0,τ ]
∇−t Jτ (γ) (dξ−u − dγ−u )

First Order Optimality Condition

An absolutely continuous trading policy γ̂ is optimal when
∇±t Jτ (γ̂) = 0.
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A Variational Approach for Continuous Modeling

In the spirit of Bank & Voß (2018), calculate the infinite
dimensional buying- and selling- subgradients for Jτ (γ)

∇±t Jτ (γ) = ∇±t Dτ (γ) +∇±t Lτ (γ) +∇±t Qτ (γ)

where

∇±t Dτ (γ) =

{
±βσ2

∫ τ
t (γu − µ

βσ2 )du if β > 0

µ otherwise

∇±t Lτ (γ) =
1

2
(S0− ± R0−)e−αt

∇±t Qτ (γ) =
1

2
e−α(τ−t)

[
(Sτ ± Rτ )− (S0− ± R0−)e−ατ

]
+ α

∫ τ

t

[
(Su ± Ru)− (S0− ± R0−)e−αu

]
e−α(u−t)du
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Dynamics of the Continuously Trading Policy

Assume that γ is absolutely continuous over (a, b) ⊂ (0, τ).
Following a routine of setting ∇±t Jτ (γ) = 0 and differentiating, as
per Bank & Voß (2018), it can be shown

γ̈t
− =

α2βσ2

2αλ+ βσ2

( µ

βσ2
− γt

)
With the general form

γ−t = c+e
θt + c−e

−θt + γ0 −
µ

βσ2

Having a signed difference for γ+
t .
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Recap and Relevance

• Refinement on the bid/ask model supporting a more robust
economic intuition

• Simplistic modeling of a stochastic control problem as a QP

• Alternative approach to the Hamilton-Jacobi-Bellman PDE

0 = max

{
(µc + 1)

∂J

∂t
+
σ2

2

∂2J

∂p2
− αr ∂J

∂r
− α∂J

∂s
,

λ
∂J

∂r
− 1

2
r +

∂J

∂c
+ λ

∂J

∂s
− 1

2
s,

−λ∂J
∂r

+
1

2
r − ∂J

∂c
+ λ

∂J

∂s
− 1

2
s,

max
∆c

{
∆J − r

2
∆c − 2

2
|∆c | − λ

2
|∆c|2

}}
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Model Extensions

• Alternative models for the LOB
• Time-varying market resilience α(t)
• Non-linear price impacts

• Increase dimensionality
• (A)t≥0, (B)t≥0 and (P)t≥0 become p-dimensional
• Λ ∈ Rp×p and α ∈ Rp×p

• Allow for adverse impacts from competing agents ξ
• Setup and solve the Nash-equilibrium

dAt = dPt + Λ(dγ+
t + dξ+

t )− α(At − Pt)dt

dBt = dPt − Λ(dγ−t + dξ−t )− α(Bt − Pt)dt
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