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Abstract. The purpose of this report is to compare the performances
of five financial optimization models: (1) Mean-Variance Optimization
(MVO), (2) Robust MVO with an ellipsoidal uncertainty set, (3) Re-
sampling MVO, (4) Most-diverse MVO and (5) Conditional Value-at-
Risk (CVaR) Optimization with Monte Carlo Simulations. Techniques
1, 2, 3, and 4 were designed to use the Fama-French three factor model
for parameter estimates, and technique 5 incorporated a Monte-Carlo
simulation to generate future prices. The performance of each optimiza-
tion model was compared by running an investment simulation based on
the weekly adjusted closing prices of twenty stocks from S&P500, be-
ginning in January 2013 and ending in December 2015. It was observed
that the largest return was realized under MVO and re-sampling MVO,
with both models returning over 60% (of time zero value) by the end
of the simulation. The behavior of different re-sampling parameters was
measured. The performances of other risk ratios of such as the Value-at-
Risk (VaR), CVaR, and Sharpe Ratios were evaluated for the portfolio
generated by each model.

1 Methodology

We motivate our work by formally stating our goal: we are interested in ex-
ploring the capabilities of financial models to construct an optimal portfolio of
stocks. We turn to optimization models because we are interested in developing
an efficient framework to justify our asset allocations to minimize risk of loss
and ensure a confidence of gain.

The models presented in section 2 will be used to construct portfolios which
will consist of up to twenty assets, all from the S&P500. The simulation is run
from 2013 to 2015 based on the weekly adjusted prices of the twenty stocks.
Since we are using historical data, we have the luxury of immediately comparing
our results to realized returns.

The remainder of this section will be dedicated to explaining the methodology
used in this project. All topics will be relevant to some application of a portfolio
model presented in section 2.



Portfolio Mean and Variance: Central to an optimization model are the
parameters we rely on. Suppose we are interesting in tracking up to n assets,
each having the following properties

– a realized return of ri,
– an expected return of µi,
– a return variance of σ2

i , and
– a return covariance of σij with a different asset j

We can setup our optimization problem by establishing the decision variables
xi which correspond to the proportions of our wealth to invest in each asset i.
With that, we can state the expected return µp and variance of our portfolio σ2

p

µp : =
n∑
i=1

µixi (1)

σ2
p : =

n∑
i=1

n∑
j=1

xixjσij (2)

It is convenient to develop our parameters in matrix form, so we define µ ∈ Rn
to be the vector of expected returns, x ∈ Rn to be the vector of optimized asset
allocations and Q ∈ Rn×n to be a symmetric covariance matrix. We express
these quantities explicitly

µ =


µ1

µ2

...
µn

 x =


x1
x2
...
xn

 Q =


σ2
11 σ12 . . . σ1n
σ21 σ2

2 . . . σ2n
...

...
. . .

...
σn1 σn2 . . . σ

2
n


The equations above provide the parameters for the typical optimization

model, but we need to justify how to arrive at parameter estimates. For such a
task, we use a factor model.

Factor Model: A factor model attempts to explain the returns of asset by
defining the returns as a function of several observed factors. Factor models
can range in complexity being driven by different economic views which are
considered important drivers for the return rate of an asset. The generic form of
a k factor model is a regression model:

ri : = αi +

k∑
i=1

βikfk + εi (3)

Where ri is taken to be the rate of return of asset i. Note that we preserve
randomness of the return ri by noting that our factors may be noisy and εi repre-
sents idiosyncratic risk particular to the asset. Note that the following conditions
are assumed when in an ideal environment
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– The factors are independent from one another, σfi,fj = 0 ∀i 6= j
– The factors are independent to idiosyncratic noise, σfi,εj = 0 ∀i, j
– Idiosyncratic risk from one asset is independent to idiosyncratic risk from

another, σεi,εj = 0 ∀i 6= j
– Idiosyncratic risk is normally distributed with mean 0 and variance σεi ,

meaning εi ∼ N (0, σεi)

For the sake of developing our parameter estimates, we will not be assuming
ideal conditions in our project. We do this because, as we shall soon see, it often
is the case that it is difficult to establish parameters which are independent
of each other. With that, we proceed with our parameter estimates from the
following

µi : = E(ri) (4)

σ2
i : = E

(
ri − E(ri)

)2
(5)

σij : = E
(
ri − E(ri)

)(
rj − E(rj)

)
(6)

It is easier to work with factor models when in matrix form, so we express
equations for µ ∈ Rn and S ∈ Rn×n

µ = βT f + ε (7)

S = xTQx + D (8)

Where f̄i is a geometric return of factor i. For clarity, we explicitly state the
following:

µ =


µ1

µ2

...
µn

 f =


f̄1
f̄2
...
f̄n

 ε =


ε1
ε2
...
εn

 D =


σ2
ε1 σ2

ε12 . . . σ
2
ε1n

σ2
ε21 σ2

ε2 . . . σ2
ε2n

...
...

. . .
...

σ2
εn1

σ2
εn2

. . . σ2
εn


Fama-French Three Factor Model: The Fama-French three-factor model4

will be what is used in this project for MVO parameter estimation. The model
is as follows

ri −Rf : = αi + βim(fm −Rf ) + βisSMB + βivHML (9)

For which

– ri −Rf is the excess return of asset i with respect to the risk free rate Rf
– αi is the intercept term, representing the absolute return
– βim is the market risk factor loading, tracks how an asset moves with the

market portfolio

4 Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on stocks
and bonds. Journal of Financial Economics, 33(1):356.
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– fm −Rf is a factor that tracks the excess return of the market portfolio
– βis is the size risk factor loading, relates the performance of the stock’s return

to it’s company’s size
– SMB is a factor taken as the average return of a portfolio composed of small

cap stocks minus the average return of large cap stocks
– βiv is the value risk factor loading, relates the perceived value of the com-

pany’s stock to performance
– HML is a factor computed as the average return of a portfolio composed

of stocks with the highest Book-to-Market ratio minus the stocks with the
lowest Book-to-Market ratio.

The Fama-French Three factor model does not satisfy the ideal conditions for
a factor model, since the factors may very well be dependent. So, it is justified
to use equations 7 and 8 for parameter estimates. The next part of this section
will summarize how to determine the factor loadings through a linear regression.

Linear Regression with the Fama-French Three Factor Model: The
general factor model can be represented as a linear regression model. For this,
we use a dataset of size p containing known returns and factors for up to n assets.
This project will perform the regression for n = 20 stocks based on p = 52 sets
of returns and factors.

With the Fama-French Three Factor model, we will solve for the factor load-
ing terms by writing equation 9 in the following form.

R = Xβ + ε (10)

Here we have are

R =


r11 −Rf r21 −Rf . . . rn1 −Rf
r12 −Rf r22 −Rf . . . rn2 −Rf

...
...

...
r1p −Rf r2p −Rf . . . rnp −Rf

 X =


1 fm1 −RF SMB1 HML1

1 fm2 −RF SMB2 HML2

...
...

...
...

1 fmp −RF SMBp HMLp



β =


α1 α2 . . . αn
β11 β21 . . . βn1
β12 β22 . . . βn2
β13 β23 . . . βn3


In which the matrix X ∈ Rp×4 is our design matrix containing all of the

regression information about our factors, R ∈ Rp×n is the realized returns, β ∈
R4×n is the regression coefficients we wish to solve for and. Completing the
linear regression (requiring that X is nonsingular) we calculate for β using the
following closed form solution

b = (XTX)−1XTR (11)
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Based on equation 11, we can determine our model error terms by taking

ε = R−Xb (12)

Which provides a ready means to determine D in equation 8.

Ellipsoidal Uncertainty Sets: Our factor model gets us so far so to arrive at
parameter estimates, but we concede that these estimates may still be ‘noisy’.
We would like to develop a framework to account for this uncertainty and work
this into the robust optimization model presented in 2.2. For this task, we define
the following ellipsoidal uncertainty set U for expected return estimates of n
assets.

µtrue ∈ U(µ) = {µtrue ∈ Rn : (µtrue − µ)TΘ−1(µtrue − µ) ≤ ε22}

Note that Θ ∈ Rn×n represents the standard variance derived from the co-
variance matrix Q and ε22 ∈ R is the uncertainty tolerance of U . These values
are calculated as follows

Θ :=
diag(Q)

n
=

1

n


σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
n

 (13)

ε22 := χ2
n(1− α) (14)

In which χ2
n(1− α) is the inverse cumulative distribution function for a chi-

squared distribution with n degrees of freedom. We base this percentile estimate
at a 1− α confidence level.

When optimizing under a robust framework, we penalize our expected returns
by the amount that we expect the returns to vary around their true value. Defined
in terms of Θ and ε22, the penalty terms looks like

ε2
√

xTΘx

And as we will see in 2.2, the application of robust optimization with an
ellipsoidal uncertainty set involves taking the difference between the portfolio’s
expected return and the penalty term shown above.

Re-sampling Process: Exercising re-sampling during the optimization process
improves the robustness of the optimizer by introducing small perturbations to
the expected returns and covariances.

The re-sampling process is a technique to generate samples of the assets’ re-
turns based on some historical distribution. An alternative to robust optimiza-
tion, optimization based on re-sampling can achieve similar forms of robustness
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as with the aforementioned uncertainty sets.

Specifically, this process assumes a normal distribution of the asset returns
with µ, which is the expected asset excess returns for n assets, and Q , which
is the covariance of these returns. At each cycle of the re-sampling process, a
vector rt of the sampled asset return is drawn from this distribution:

rt ∼ N (µ,Q) ∀t = 1, 2, ..., T and rt ∈ Rn

Then, geometric mean and covariance of these T sampled returns are computed.
The new mean and covariance will likely contain some bias from the initial sam-
ple mean and covariance. By iterating this process numerous times, the output of
the optimizer would be more stable with respect to the perturbations introduced.

Index Tracking for Diverse Optimization: The metric used to measure how
closely a portfolio of k assets tracks the market is with the total correlation of the
portfolio, defined as the sum of the correlations that each asset in the market has
with the one asset in the portfolio it is best represented by. To attempt to create
a portfolio that will most accurately track the market, we seek to maximize the
correlation, which is done with the following optimization problem:

max
z,y

n∑
i=1

n∑
j=1

ρi,jzi,j

st 1Ty = k

z1 = 1

zi,j ≤ yj , i = 1...n, j = 1...n

zi,j ∈ {0, 1}
yj ∈ {0, 1}

with z ∈ Rn×n representing whether asset j is representative of asset i in the
resulting portfolio and y ∈ Rn representing whether an asset was selected to be
in the portfolio.

The first constraint in the problem ensures that only k assets are selected to
be held at any time. The value of k is determined prior to running the optimiza-
tion and given as an input argument.

The second constraint ensures that each asset in the market is represented
by only one asset in the portfolio, which will correspond a single 1 in each row of
z will all other values being 0. If the asset itself is in the portfolio, then zi,i = 1,
and zi,j = 0, i 6= j by definition.

The final constraint ensures that an asset can’t be representative of another
asset without also being in the portfolio, thereby linking the two decision vari-
ables of the problem. By combining this constraint with the second constraint,
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we obtain the relation that every asset is represented by exactly one asset in the
portfolio.

This model uses the approach of separating the assets in the market into
‘buckets’, with one asset from each being chosen to represent the whole bucket.
So, the value for each asset that is added to the objective function is the correla-
tion between the asset and its representative. We see that if the number of assets
in the portfolio k is allowed to equal the number of assets in the market, each
asset would represent itself (zi, i = 1, i = 1...n, since ρi,i = 1), and the resulting
objective function value would be n, the least upper bound of the problem.

Monte Carlo Simulation for Correlated Asset Prices: We assume that
our asset prices follow a Geometric Brownian Motion. From this, we can readily
derive a stochastic equation governing the asset prices, starting first from the
asset returns.

We have previously seen that rt ∼ N (µ,Q) so that for asset i with price P
at time t, we have

rt =
S
(i)
t − S

(i)
t−1

S
(i)
t−1

= µi + ξ
(i)
t (15)

Where ξi is a normal random variable which accounts for correlation between
your holding assets. We will address shortly how this is determined. Under a
continuous pricing model we have the following stochastic differential equation
(SDE)

dS
(i)
t = µiS

(i)
t dt+ σiξ

(i)
t

√
dt (16)

Solving this SDE leads to the following equation

S
(i)
t+1 = S

(i)
t e(µi−

1
2σ

2
i )dt+σiξ

(i)
t

√
dt (17)

Now we will address where ξi comes from. Given our covariance matrix Q we
can readily define our correlation matrix ρ ∈ Rn×n such that

ρ =


1 ρ12 . . . ρ1n
ρ21 1 . . . ρ2n
...

...
. . .

...
ρn1 ρn2 . . . 1

 (18)

where ρij =
σij
σiσj

. With that, we define L ∈ Rn×n to be the lower Cholesky

factorization of ρ and take ξ ∈ Rn to be defined as follows

ξ := Lε (19)
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Where ε ∈ Rn ∼ N (0, 1 ). It readily follows then that ξ ∼ N (0, LLT ). If we
were considering assets in isolation, then it would suffice to use a standard nor-
mal variable in equation 17 instead of ξi. However we are considering a portfolio
of correlated assets, so it follows that our development of ξ is required.

Given the above framework for determining the price of an asset, a Monte
Carlo simulation can be run by repeatably calculating the price of an asset as it
follows different paths. Upon each iteration, the asset’s price will be simulated
from a different random path and given a sufficient number of simulations, pa-
rameters can be estimated as done with any other Monte Carlo method.

Finally, we conclude this section by addressing risk measures which will be
used in section 2.5 and throughout the analysis of each optimization model.

Value-at-Risk and Conditional Value-at-Risk: Value-at-Risk (VaR) is a
downside risk measure which indicates at what value an expected loss would
exceed over a specified period and at a certain confidence level. For instance, a
twenty-day VaR95% of $17 million would specify that over a 17 day investment
horizon, there is a 5% chance that the portfolio will have losses that exceed
$17 million. Where the VaR provides a threshold for which losses might exceed,
the Conditional Value-at-Risk (CVar) specifies what the expected loss is over a
specified period and at a certain confidence level. Meaning that if a twenty-day
CVaR95% is $17 million, then the portfolio is expected to lose $17 million in one
of those twenty days.

To calculate VaRβ and CVarβ , we need access to the following:

– x which is a portfolio of assets
– r which is a random realization of asset returns
– p(r) which is the probability density function of the random returns
– Π which is the cumulative distribution function of the random returns
– f(x, r) which is the loss/gain of the portfolio for a given return

Given the above, we calculate VaRβ and CVaRβ as follows:

VaR = min{γ : R|Π(γ; x) ≥ β} (20)

CVaR =
1

1− β

∫
f(x,r)≥VaRβ

f(x, r)p(r)dr (21)

Ideally, CVaRβ should be minimized as this reduces a portfolio’s expected
loss. This is the task at hand in section 2.5 however minimizing CVaRβ is
different from an optimization perspective because it is non-convex. Addition-
ally, probability functions are seldom known analytically and so historical-based
CVaR optimization or simulation-based CVaR optimization must be used. This
project elects for a simulation-based CVaR optimization, using the methods
summarized in the Monte Carlo simulation section as a guideline for generating
returns scenarios in which CVaR is approximated empirically. More details for
this will come in section 2.5.
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2 Portfolio Optimization Models

We use five optimization techniques based on the MVO introduced above. In
this section, each model will be presented and briefly explained. The models are
as follows:

1. The standard MVO model.
2. Robust MVO with an ellipsoidal uncertainty set
3. Re-sampling MVO
4. Most-diverse MVO
5. Conditional Value-at-Risk (CVaR) Optimization with Monte Carlo Simula-

tions

2.1 Standard MVO Model

The MVO model we take as standard will seek to minimize portfolio risk sub-
jected to the following constraints.

Return Constraint: We demand a minimum portfolio mean of R, which will
be taken as the average yearly return for each asset. This constraint ensures that
we are adequately rewarded for the risk we assume.

Budget Constraint: We wish to use all of our available funds for asset allo-
cation, so the sum of the proportions of our constituent assets should sum to
unity.

Short-Selling Permitted: We do not prohibit taking on a short position in
our portfolio. This means that the proportions of our assets are unbounded.

With these constraints, we present our standard MVO model as

min
x

xTQx

st µTx ≥ R

1Tx = 1

xi ∈ R ∀i = 1 . . . n

Parameter Estimates: Most of section 1 was dedicated to explaining how
parameters are estimated in an MVO formulation. Here we use this the Fama-
French Three Factor model to estimate our expected returns µ and covariances
Q.
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2.2 Robust MVO with an Ellipsoidal Uncertainty Set

The robust MVO aims at improving the stability of the solutions by including an
uncertainty set, which in this case belongs exclusively to the constraint variables.

Most of the heavy-lifting for this robust optimization section came in the
relevant portion of the Methodology section. All that is left to do here is present
the optimization model and summarize our constraints. With that, we are opti-
mizing the following

min
x,y

50xTQx− (µTx− ε2y)

st 1Tx = 1

y = xTΘx

xi ∈ R ∀i = 1 . . . n

y ≥ 0

This optimization seeks to minimize the variance while maximizing the robust
expected return of the portfolio.

Confidence Level: Recall that ε22 = χ2
n(1− α). For this model, we elect for a

90% confidence level so that ε22 = 28.4.

Auxiliary Variable: The auxiliary variable y was introduced so that y =√
xTΘx. We do this for practical reasons given that our solver of choice, Gurobi,

requires the objective function to follow a standard quadratic form. By making
this variable definition we introduce a new quadratic constraint which the solver
can handle.

Short-Selling Permitted: We permit short-selling, allowing our asset-holding
values to take on any real number.

Budget Constraint: It should come as no surprise that we are again looking
to fully-utilize our investment budget.

2.3 Re-sampling MVO

The re-sampling MVO is combines the re-sampling process with nominal MVO
model, where the optimizer seeks to minimize the variance subjected to the
target return constraint. The parameters µ, which is the expected asset excess
returns for n assets, and Q , which is the covariance of these returns, are gener-
ated with the returns through a normal distribution described in section 1.
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Then the geometric mean and covariance of these sampled returns are com-
puted, which in turn are feed into the MVO model described in section 1. This
sampling and feeding process is repeated for pre-specified number of times. The
output weights for each cycle is recorded, and a final set of output weights are de-
termined through averaging the weights generated through this cyclic sampling
process.

2.4 Most-Diverse MVO

The most-diverse MVO combines the nominal MVO problem with the added
constraint of only wanting to hold a pre-determined number of assets k < n, the
number of assets in the market, so as to be able to track the performance of the
market as closely as possible without holding every single asset.

In our example, with n = 20 assets chosen to represent the market, we decide
to hold exactly k = 12 different assets during each investment period. After
finding the assets that should be included in the final portfolio, their condensed
return and covariance matrices are passed into the nominal MVO problem to
yield the final portfolio of k assets. A few different things to note are:

1. The maximum possible value when calculating the total correlation of the
portfolio is 20, which would occur if the 12 selected assets had perfect cor-
relation with the other 8 assets that aren’t selected.

2. Because the correlation optimization is done for every single investment pe-
riod, the assets that are represented by each asset in the portfolio can be
different each time.

3. As a direct consequence of the above result, assets that are held for one
investment period may be liquidated for the next investment period, intro-
ducing the risk of high transaction costs for the portfolio over its lifespan.

2.5 CVaR Optimization with Monte Carlo Asset Price Simulation

Following the development of section 1, we look to formulate a convex equivalent
to the following CVaR optimization

min
x

CVaRβ

st 1Tx = 1

xi ≥ 0 ∀i = 1 . . . n

We take a step towards simplifying the objective function by accepting the
role that a Monte-Carlo simulation will play in generating unrealized portfolio
losses and gains. The general approach will be to simulate many asset prices in
the return to extract returns for which the loss of the portfolio can be approx-
imated. We take a large number of simulated asset prices so as to adequately
cover the variation implied by the Geometric Brownian Motion Process.
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Under the Geometric Brownian Motion framework for asset prices, we sim-
ulate S = 2000 prices for all n = 20 holding assets. For simplicity we take a
single time-step and look to use the weekly return estimates that we get from
our factor model to get our asset prices for six-months ahead. From the frame-
work developed in section 1, we take dt = 26.

Shown in figure 1 is the simulated prices of our twenty holding assets. Note
that these prices are generated at each scenario and are based on the current
prices. Using a single time-step, the prices are estimated six months in the future.

Fig. 1. Monte Carlo Simulation for Holding Asset Prices 6-months up to 01/01/2015
using 1 timestep.

With the simulate asset prices, at each scenario the returns are calculated rs
based on the current asset price. From this, a loss function can be empirically
derived

f(x, rs) = −rTs x (22)
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By taking γ = VaRβ , we can now approximate our CVaRβ with the following

CVaRβ ≈ γ +
1

(1− β)S

S∑
s=1

max(−rTs x− γ, 0) (23)

Now the term in the summation is not a linear function, but a simple ma-
nipulation can lead to the following optimization model for which the objective
function converges to CVaR.

min
x,z,γ

γ +
1

0.05S

S∑
s=1

zs

st zs ≥ −rTs x− γ ∀s = 1 . . . S

zs ≥ 0 ∀s = 1 . . . S

1Tx = 1

xi ≥ 0 ∀i = 1 . . . n

Auxiliary Variable and Constraints: The decision-variable z ∈ RS was
introduced to accommodate the maximum function in equation 23 into the linear
program. By doing this, we introduce two sets of additional constraints to ensure
that the z is equivalent to the maximum function.

Short-Selling Prohibited: In this to ensure stability in our solution, we do
not permit short-selling.

Budget Constraint: Always present.

β, Time-interval and VaR: For our CVaR optimization, we take a β = 95%
confidence level and we consider our simulations over a six month period. We
are therefore optimizing a six month CVaR95%. Also, since we are looking to
minimize γ in our objective function, we are elegantly able to extract what our
six-month VaR95% is as well.

2.6 Transaction Costs

Noticeably absent in all of our optimization models is the cost to transact. The
transactional costs varies depending on the investor – large institutional firms
pay a reduced price per transaction when compared to a lay investor because
institutions have larger trading volumes.

Depending on the motive, transaction costs may be included in the budget al-
located for investing. This penalizes high frequency re-balancing of the portfolio
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as this reduces the potential gain from the portfolio investment strategy. Addi-
tional develops to the optimization framework could include constraints limiting
the fees incurred from transaction costs

For this project, we shall consider having access to an express account without
limit. We will model our transactional cost based on 0.5% of the trading volume
at the stocks current price pi. This is calculated

ci = 0.005pi∆i (24)

Where ∆i ∈ R is size of the transaction. Our comparison of the three op-
timization models will include monitoring the incurred transactional costs on a
per-period basis.

3 Results

Table 1 has the list of stocks tracked under each portfolio optimization method.
Weekly adjusting closing prices were used from the start of 2012 to the end of
2015. The simulation began in 2013 and ran over the two years, with the portfo-
lios being rebalanced every six months. The calibration of the factor model was
done during the start of each investment period and used a years worth of prior
weekly adjusted closing prices.

Table 1. 20 Stocks from the S&P500 tracked

S&P500 Sector Company Tickers

Consumer Discretionary F MCD DIS

Consumer Staples KO PEP WMT

Financials C JPM WFC

Healthcare PFE JNJ

Industrials CAT

Energy MRO XOM

Information Technology AAPL IBM

Materials NEM

Utilities ED

Telecommunications T VZ
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Fig. 2. Portfolio values for each optimization model over the course of the tracking
period.

Fig. 3. Zoomed in Portfolio values for each optimization model over the course of the
tracking period.
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3.1 Portfolio Statistics

Table 2. Weekly Portfolio Value Metrics for each optimization model

mvo robust re-sample diverse cvar

Maximum Value ($) 169 138 168 145 165

Week # for Maximum Value 148 154 148 157 134

Minimum Value ($) 99.4 98.6 99.2 99.2 99.0

Week # for Minimum Value 1 1 1 1 1

Largest Weekly Gain ($) 5.48 4.22 5.39 4.31 8.05

Week # for Largest Weekly Gain 121 151 121 28 95

Largest Weekly Loss ($) 7.71 5.77 7.79 5.85 9.31

Week # for Largest Weekly Loss 139 102 139 102 138

Longest Winning Streak (lws) 8 18 15 10 10

Week # When lws Ended 114 19 16 17 17

Longest Losing Streak (lls) 4 4 4 4 4

Week # When lls Ended 51 36 51 34 36

A summary of the average realized return of each portfolios at each time is
presented below in Table 3.
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Table 3. Average Returns of each portfolios per period

nominal robust re-sample diverse cvar

Investment Period 1 0.135 0.093 0.126 0.115 0.109

Investment Period 2 0.053 0.045 0.052 0.023 0.089

Investment Period 3 0.071 0.032 0.074 0.019 0.062

Investment Period 4 -0.004 -0.001 -0.008 -0.014 0.052

Investment Period 5 0.062 0.026 0.061 0.035 0.023

Investment Period 6 0.050 0.001 0.051 0.061 -0.022

3.2 Portfolio Weights

The following are the area plots for each of the portfolios, which show the per-
centage of the portfolio’s total wealth allocated to each of the 20 market assets
at each of the re-investment periods as the distance between the two lines that
contain the region whose colour corresponds to each asset. Where applicable,
comments will be made on note-worthy trends in the graph.

Fig. 4. Area plot for the nominal MVO problem.

The first plot is for the nominal MVO problem, and the first thing to note
is the allowance of short-selling in this problem. This is shown by the fact that

17



the base and peak values, which should be 0 and 1 respectively for a portfolio
containing only long asset positions, are instead seen to be outside that range.
This is a trend that should be common to the area plots of all problems that
allow and are optimized by short-selling.

Fig. 5. Area plot for the robust MVO problem.

This next plot is for the robust MVO problem, and the first thing we see
that even though the robust MVO problem should allow for short-selling, the
optimal portfolio doesn’t short-sell any assets for the duration of the portfolio’s
lifespan. This could only be a property of the model that was used, which would
imply that imposing an uncertainty set on the returns of the market assets will
favor taking a long position in all assets.
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Fig. 6. Area plot for the resampling MVO problem.

In the graph of the portfolio values over the total testing period, we saw
that the resampled MVO portfolio very closely followed the value of the nominal
MVO portfolio. We see from the area plot that this was, as suspected, because
their weights were very similar for every investment period. This shows that the
resampling addition to the nominal MVO problem didn’t affect the results very
much.

Fig. 7. Area plot for the diverse MVO problem.
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The diverse portfolio was created so that it only held the 12 assets that would
best track the market for any given investment. This results in the possibility of
much larger perecentages of the total wealth being held in a single asset. Since
these assets are chosen again after every investment, an asset that held a large
portion of the portfolio wealth for one investment period can be liquidated for
the next investment period and vice versa.

Fig. 8. Area plot for the CVaR Optimization problem.

The most note-worthy fact about the CVaR portfolio’s plot of weights is
that the portfolio never holds more than half the assets in the market at a
time, which was often done in MVO to diversify away the idiosyncratic risk of
the portfolio. Instead, the portfolio optimization, which focuses on minimizing
the mean shortfall, will produce a portfolio with fewer assets, presumably all of
which have lower values of mean shortfall for that investment period.

3.3 Re-sampling Behavioral Analysis

In order to select appropriate parameters for the re-sampling MVO model, the
behavioral of the portfolio value based on variables ’T’ and ’NoEpisodes’ are an-
alyzed by fixing one variable and changing the other. Specifically the variables
are defined as such:

– ′T ′ - Number of samples generated and averaged to obtain the aforemen-
tioned geometric mean, of which is the input to the nominal MVO optimizer.
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– ′NoEpisodes′ - Number of cycles the sampling process is performed.

To compare the performance of these portfolios with different parameters, a
baseline portfolio is derived and the differences in portfolio values are noted. The
baseline portfolio is constructed by averaging the portfolio values of those with
the largest varying parameter. For example, if ′T ′ is the varying parameter, then
the portfolio values with the largest ′T ′’s are arithmetically averaged, and this
average is set as the baseline performance for all other portfolios. This would
indeed provide an acceptable baseline because the randomness inherent in the
procedure will eventually regress to its mean by the law of large numbers.

The following results were obtained fixing one parameter while varying the
others based on the set described in the legend.

Fig. 9. (left) Resampling with varying T and 60 episodes. Optimized with MVO. (right)
Resampling with varying episodes and T = 100. Optimized with MVO.

The left figure shown above depicts the aggregate behavior of the portfolio
value with a fixed 60 iterative cycles and a varying number of samples (T sam-
ples). By inspection, those with smaller T show a randomized path with high
volatility, while those with larger T are much closer to 0 with lower deviation.
This is indeed expected as with a smaller T , the geometric mean and covariance
of the generated returns are much more likely to inherent a large bias from the
true sample mean and covariances. On the other hand, the geometric mean and
covariance for larger T are much more likely to inherent a smaller bias from the
true sample mean and covariances. To obtaining a more robust portfolio through
resampling, the parameter T should neither be too small, as the mean is more
likely to deviate from the true mean by too large of an amount, or too large, as
the mean is more likely to affix on the true sample mean and defeat the intention
of robustness. Hence, a compromising T = 100 is selected for the reminder of
the experiment.

The right figure shown above depicts the aggregate behavior of the port-
folio value with a fixed T = 100 and a varying number of iterative episodes
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(NoEpisodes samples). By inspection, those with smaller NoEpisodes had a
more randomized path while larger (NoEpisodes had a more linear path. While
this behavior is similar to the above variant, it is worth noting that while in the
previous analysis, portfolio values with larger T generally outperformed those
with smaller T , portfolio values of larger NoEpisodes does not necessarily imply
the same behavior. Approximately the same number of values outperformed the
baseline as the number of portfolio values that underperformed. This suggests
that the behavior of the portfolio appear much more sensitive to the NoEpisodes
than to T .

3.4 Transaction Costs

Shown below are metrics for the transaction costs for each of the 5 portfolios.
They give the most important statistics concerning transaction costs incurred
for each investment strategy.

Table 4. Transaction Cost Metrics for each optimization model

mvo robust re-sample diverse cvar

Maximum Incurred Cost ($) 1.70 0.40 1.59 1.19 0.78

Rebalancing Period for Max Incurred Cost 5 3 5 1 2

Minimum Incurred Cost ($) 1.03 0.26 0.90 0.94 0.56

Rebalancing Period for Min Incurred Cost 1 5 1 4 5

Average Transaction Cost ($) 1.37 0.33 1.35 1.05 0.66

Standard Deviation in Cost ($) 0.25 0.06 0.27 0.10 0.09

Total Transaction Costs ($) 6.87 1.67 6.74 5.24 3.32

Total Costs as % of Final Value 4.1 1.2 4.1 3.5 2.2

3.5 Sharpe Ratios

The two graphs below compare the Sharpe ratios of the different portfolios for
each investment period.

For the Ex-Ante plot, the investment period refers to the period for which
the Sharpe ratio is being predicted. So, the first period refers to the initial pre-
diction made at time t = 0 prior to the first period, and the last period refers
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to the final prediction made just after the final re-balancing of the portfolios.

For the Ex-Post plot, the investment period refers to the same period, but
since the actual portfolio return and variance are being used to calculate the
Sharpe ratio, the value is calculated at the end of its corresponding. So, the first
value is calculated at the same time as the first portfolio re-balancing, and the
last value is calculated after the final liquidation of the portfolios.

Fig. 10. Ex-Ante Sharpe Ratios for each portfolio before each investment period.

Fig. 11. Ex-Post Sharpe Ratios for each portfolio after each investment period.
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We see immediately that the Sharpe ratios of the CVaR-optimized portfo-
lio exceed those of all other portfolios for almost every investment period. As
a portfolio that is seeking to minimize the expected shortfall, there’s no direct
objective of the portfolio, so this result is not immediately obvious. The most
reasonable explanation for this would be that the other portfolios, all being cre-
ated with a variation of the MVO problem, are averse to higher levels of risk
that usually come from higher levels of return, so as a result, their Sharpe ratios
all stay relatively low.

In addition, the ratios of the different portfolios tend to move together. This
sort of behavior is expected, since the performance of the market affects each
portfolio’s ability to earn excess returns per unit of risk. Therefore we can say
that the market, as modeled by our 20 representative assets, showed its strongest
growth and stability during the third investment period, when most of the Sharpe
ratios (both Ex-Ante and Ex-Post), achieved their maximum values.

Lastly, when comparing the two different Sharpe ratio values for each port-
folio individually, there’s no conclusive relationship that could suggest a way of
using one of the two Sharpe ratios to predict the other. The fact that one is
a predictive value while the other is a performance metric means there is no
guarantee that one will be indicative of the other. For example, the nominal
MVO portfolio generally produced Ex-Post values that were lower than their
respective Ex-Ante values, but in general this is not true. The most that can be
said is that like the values for different portfolios, the two different Sharpe ratios
for a portfolio will generally move together, showing that the Ex-Ante Sharpe
ratio for our choice of period length is able to predict movements in the ratio of
returns to risk.

3.6 Portfolio VaR95% and CVaR95%

As outlined in section 1 we have an analytical framework to calculate VaR95%

and CVaR95%. However as we saw in the CVaR optimization model develop-
ment, using the analytical framework is cumbersome. Rather, we can approxi-
mate VaR95% and CVaR95% for each portfolio using the results from out Monte
Carlo simulation (we do this with the exception of the CVaR optimized portfolio,
which is optimized to be exact).

Given each investment period, 2000 scenarios were generated using a Monte
Carlo simulation and under each scenario, the expected returns were calculated.
With a loss function taken to be f(x, rs) = −rTs x, the VaR and CVaR for each
portfolio is approximated based on the following:

VaR95% ≈ P95%({−rTs x : s = 1 . . . 2000}) (25)

CVaR95% ≈ V aR95% +
1

2000(1− 0.95)

2000∑
s=1

max(−rTs x− CVaR95%, 0) (26)
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Where P95%(A) is the 95th percentile of set A. Note that shown above are
approximations, and yet we find that the results from the above equations yield
VaR and CVaR values which reasonably accurate. We first compare the approx-
imated VaR and CVaR values and then we present the approximated VaR and
CVaR values for each portfolio model over each investment period.

Table 5. Comparison of the approximated VaRa
95% and CVaRa

95% against the corre-
sponding optimized VaR95% and CVaR95% for the CVaR optimized portfolio

VaRa
95% VaR95% CVaRa

95% CVaR95%

Investment Period 1 0.026 0.033 0.054 0.058

Investment Period 2 -0.048 -0.048 -0.023 -0.023

Investment Period 3 -0.044 -0.036 -0.019 -0.016

Investment Period 4 -0.056 -0.050 -0.026 -0.024

Investment Period 5 -0.021 -0.012 0.005 0.019

Investment Period 6 0.004 0.035 0.040 0.059

Table 6. Predicted portfolio VaR95% values for each time period from the Monte Carlo
simulated returns

nominal robust re-sample diverse cvar

Investment Period 1 0.0257 0.0528 0.0424 0.0363 0.0252

Investment Period 2 -0.0030 0.0018 0.0034 0.0092 -0.0461

Investment Period 3 -0.0275 -0.0039 -0.0299 0.0030 -0.0439

Investment Period 4 0.0017 0.0047 0.0101 0.0044 -0.0540

Investment Period 5 0.0202 0.0120 0.0116 0.0197 -0.0197

Investment Period 6 0.0368 0.0485 0.0295 0.0570 0.0214
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Table 7. Predicted portfolio CVaR95% values for each time period from the Monte
Carlo simulated returns

nominal robust re-sample diverse cvar

Investment Period 1 0.0468 0.0743 0.0615 0.0558 0.0489

Investment Period 2 0.0149 0.0284 0.0211 0.0313 -0.0163

Investment Period 3 -0.0061 0.0226 -0.0087 0.0233 0.0238

Investment Period 4 0.0158 0.0251 0.0238 0.0200 -0.0254

Investment Period 5 0.0384 0.0403 0.0309 0.0389 0.0050

Investment Period 6 0.0536 0.0695 0.0472 0.0782 0.0446

3.7 Sensitivity analysis on VaR and CVaR to Number of Scenarios

The various optimal VaR and CVaR values generated by the optimizer are shown
in both Table 8 and Table 9. As can be observed from the data, all correspond-
ing variables appeared in be within the same range of magnitude. In addition,
compared to the actual VaR and CVaR in Table 5, the optimal prediction does
not differ from the actual values significantly for all numbers of scenarios.

It is interesting to note that a common trend can be observed by increasing
the number of scenarios (S) in Monte Carlo simulation. The optimal VaR and
CVaR values appear to converge towards the expected VaR and CVaR values.
For instance, when there were 200 scenarios, there exhibits a higher residual
from the actual data than when there were 7000 scenarios. In fact, at S = 7000,
the optimal values all fall within a neighborhood of 0.01. Hence, this suggests
that as the number of scenarios approach infinity, the optimal VaR and CVaR
will converge towards the expected VaR and CVaR.
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Table 8. Sensitivity of optimal VaR and CVaR values to the number of scenarios in
Monte-Carlo Simulation from period 4 to 6

Scenarios Variable Period 1 Period 2 Period 3

S = 200 Optimal VaR 0.0311 -0.0192 -0.047
Optimal CVaR 0.0648 0.0622 0.0084

S = 1000 Optimal VaR 0.0345 -0.0201 -0.0360
Optimal CVaR 0.0596 0.0121 -0.0130

S = 2000 Optimal VaR 0.0248 -0.0464 -0.0099
Optimal CVaR 0.0498 -0.0190 0.0109

S = 5000 Optimal VaR 0.0288 -0.0504 -0.0435
Optimal CVaR 0.0514 -0.0191 -0.0159

S = 7000 Optimal VaR 0.0241 -0.0262 -0.0437
Optimal CVaR 0.0520 -0.0050 -0.0157

Table 9. Sensitivity of optimal VaR and CVaR values to the number of scenarios in
Monte-Carlo Simulation from period 4 to 6

Scenarios Variable Period 4 Period 5 Period 6

S = 200 Optimal VaR -0.0284 -0.0141 0.0311
Optimal CVaR 0.0470 0.0674 0.0607

S = 1000 Optimal VaR -0.0349 -0.0099 0.0137
Optimal CVaR -0.0154 0.0274 0.0481

S = 2000 Optimal VaR -0.0552 -0.0105 0.0362
Optimal CVaR -0.0272 0.0262 0.0610

S = 5000 Optimal VaR -0.0607 -0.0270 0.0105
Optimal CVaR -0.0294 -0.0036 0.0386

S = 7000 Optimal VaR -0.0634 -0.0250 0.0349
Optimal CVaR -0.0296 0.0012 0.0588

4 Next Steps and Improvements

This section will briefly highlight some areas which can be the subject for further
study to improve on or expand the given models.

More Pricing Data: This project relied on weekly adjusted closing prices over
the span of three years. It was shown that this provided a good measure of the
the portfolio’s performance. Since several parameters were based on these his-
torical prices, it would be ideal to collect as many sample points as possible in
order to try and best capture any patterns, trends and variations. This clearly
comes at the trade-off of computational time, but over short time periods such
as three years this should be easily managed.
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One may also try to increase the available pricing data by increasing the
calibration window. Recall that in this project, factor models were calibrated
using the data from the previous year. This will achieve the task of increasing
sample data, but this may not be appropriate. Sampling over a long period of
time without justification introduces the possibility of working in “old” data
that may not be relevant to the current market.

Expanding the Factor Model: The factor model used in this report was the
Fama-French Three Factor model. This model offers an improved outlook on say
the CAPM model since it includes more factors. If one can identify additional
factors that are relevant, their inclusion into a regression model can improve the
parameter estimates used in MVO formulations.

Reducing Transaction Costs: This was not of a primary concern for this
project but an investor is interested in paying as little as possible in transaction
fees. This would directly impact how frequently and to what extent the investor
re-balance his/her portfolio. If that investor is contend that it is preferable to
reduce the transaction costs (perhaps these costs come from your portfolio bud-
get) then it is possible to include a transaction constraint in the MVO to ensure
that the total transaction costs per period are capped at some upper threshold.

Resampling Parameters: For the purpose of comparison, the values of T and
number of episodes ran to optimize MVO were fixed at 100 and 60 respectively.
However, while these figures used commonly in industry, it does not imply that
they are optimal parameters. In fact, as shown in Figure 6, the weights generated
from resampling MVO appeared very similar to to those from the nominal MVO.
This similarity in weights could become problematic, if the resampling MVO was
used in the same context as the Robust MVO. Hence, more noise in the weights
could be introduced to the model in future to examine the robustness of portfolio.

Most-Diverse MVO Parameters: Similar to the resampling MVO param-
eters discussion aforementioned, the parameters k = 12 assets was selected ar-
bitrarily. While the selection yielded fruitful results, it remains to be seen how
these portfolios would behave under different parameters. While it can be easily
proven that the optimization with fewer clusters would not outperform optimiza-
tion with more clusters, the transaction cost saved through this process could
be motivating.

Shorter Investment Periods: Shorter investment periods correspond to in-
creased opportunities to re-balance your portfolios. Clearly this comes at a cost
from transaction fees, but if you are confident in your model’s ability to adapt
to the market, it may be preferable to have the freedom to quickly adjust the
allocations of your assets. Pushed to the extreme, this motivates algorithmic
trading based trading portfolios which are high-frequency in their re-balancing.
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Modeling Changes in Outstanding Shares In this report, we assumed that
the shares outstanding for each company was constant. This was a reasonable
simplification to our simulation since the number of shares outstanding does not
frequently change for a small group of stocks. The only significant actions that
would alter the number of shares outstanding would be for instance, a stock split.
To better accommodate this freedom, we could have incorporated the historical
number of shares outstanding per company, as we did with the pricing data.
This would have a provided a truer sense of the market performance of the
optimization methods. Yet for comparisons, we expect the results to be similar.
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